In-plane quasi-static and out-of-plane dynamic behavior of nanofiber interleaved glass/epoxy composites and finite element simulation
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
Eight-ply glass/epoxy composites interleaved by electrospun Polysulfone (PSF) nanofibers were manufactured by vacuum-assisted hand lay-up method. The effect of nanofibrous interlaminar layers on the mechanical performance of laminated composites was investigated under both in-plane quasi-static and out-of-plane lowvelocity impact (LVI) test conditions. Low-velocity impact responses of reference and nanofiber interleaved composite laminates were modeled by LS-Dyna finite element (FE) code for numerical simulations. The results of the quasi-static mechanical tests show that PSF nanofiber interleaving increases the tensile and compressive strength by 10.5% and 25.5%, respectively. PSF nanofibers played an important role in improving the impact damage resistance of composite laminates with increasing impact energy levels. The low-velocity impact tests results indicated that PSF nanofibers decreased the fiber breakage area at 20 J and 30 J energy levels by about 26% and 28%, respectively. Besides, PSF nanofiber interleaving improved damage threshold load values by 4.8%, 15.2%, and 23% at 10 J, 20 J, and 30 J energy levels, respectively. Experimental and FE simulation results were comparatively presented in terms of force-time, force-deflection, and energy-time curves. A good agreement was achieved between experimental and simulation results.












