Hardness and Electrical Resistivity of Al-13 wt % Mg2Si Pseudoeutectic Alloy
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
In the present work, effect of growth rates on microhardness, electrical properties and microstructure for directionally solidified Al-13 wt % Mg2Si pseudoeutectic alloy at a constant temperature gradient were studied. Directional solidification process were carried out with five different growth rates (V = 8.33-175.0 mu m/s) at a constant temperature gradient (G = 6.68 K/mm) by using a Bridgman type directional solidification furnace. Microstructure of directionally solidified Al-13 wt % Mg2Si pseudoeutectic alloy was observed as Mg2Si coral-like structure phase dispersed into primary alpha-Al phase matrix. The electrical resistivity for Al-13 wt % Mg2Si pseudoeutectic alloy, were measured by the d. c. four-point probe method. The dependency of microhardness and electrical resistivity on growth rates were obtained as IIV = 135.7 (V)(0.09) and rho = 17.30 x 10(-8)(V)(0.08) respectively for Al-Mg2Si pseudoeutectic alloy. The results obtained in present work were compared with the previous similar experimental results.












