
Turk J Math

(2017) 41: 96 – 109

c⃝ TÜBİTAK

doi:10.3906/mat-1503-84

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Free storage basis conversion over finite fields

Ersan AKYILDIZ1,2, Ndangang Yampa HAROLD1, Ahmet SINAK1,3,∗

1Institute of Applied Mathematics, Middle East Technical University, Ankara, Turkey
2Department of Mathematics, Middle East Technical University, Ankara, Turkey

3Department of Mathematics and Computer Sciences, Necmettin Erbakan University, Konya, Turkey

Received: 27.03.2015 • Accepted/Published Online: 14.03.2016 • Final Version: 16.01.2017

Abstract: Representation of a field element plays a crucial role in the efficiency of field arithmetic. If an efficient

representation of a field element in one basis exists, then field arithmetic in the hardware and/or software implementations

becomes easy. Otherwise, a basis conversion to an efficient one is searched for easier arithmetic. However, this conversion

often brings a storage problem for transition matrices associated with these bases. In this paper, we study this problem

for conversion between normal and polynomial bases in the extension field Fqp over Fq where q = pn . We construct

transition matrices that are of a special form. This provides free storage basis conversion algorithms between normal

and polynomial bases, which is crucial from the implementation point of view.

Key words: Finite field representation, conversion of field elements, transition matrix, normal basis, polynomial basis

1. Introduction

Efficient finite field arithmetic has a significant role in the implementation of cryptographic schemes [6, 8, 9].

Field elements have various representations depending on the choice of basis. The trivial representation of

field elements is the polynomial basis representation. This representation has an efficient arithmetic for field

operations: addition, subtraction, and constant multiplication. However, it is not efficient for multiplication or

inversion. There have been several attempts to improve multiplication, inversion, and especially squaring. ln

the literature, some efficient basis representations such as (optimal) normal basis, Dickson polynomial, Charlier

polynomial, and Hermite polynomial representations have been proposed (see for instance [1, 2, 9, 11]). These

representations play an important role in efficient arithmetic and are comparable with each other in view of

arithmetic complexity. While squaring is not efficient in the polynomial basis representation of binary field

elements, the normal basis is attractive for squaring since it can be performed with shift operation only, which

is almost free in hardware implementations. The inversion in normal basis representation is also efficiently

implemented by using Itoh and Tsujii algorithms in [5]. In order to multiply two elements in normal basis, a

specialized version of normal basis with some conditions called optimal normal basis (ONB) of type I and II

has been proposed in [10].

One may need a conversion algorithm having low complexity between basis representations. Conversion

of binary field elements in various representations has been well studied. In the literature (see for instance

[1, 2, 11]), there are conversion algorithms between polynomial basis representation to Hermite–Charlier–Dickson

∗Correspondence: ahmet.sinak@metu.edu.tr—

2010 AMS Mathematics Subject Classification: 94A60, 11T06.

96



AKYILDIZ et al./Turk J Math

polynomial bases representations and vice versa with linear complexity. To the best of our knowledge, there

is no efficient algorithm (in terms of space and time) to convert a field element from the polynomial basis

representation to the normal basis representation (see for instance [6]). The natural method of performing

conversion between two bases involves matrix multiplication. For large degree extensions, since the transition

matrix is too big, there appears a storage complexity in addition to the time complexity. In this case, known

conversion methods may not be used due to the memory problem. Hence, this deficiency leads to the motivation

of some storage efficient conversion techniques between two bases in fields. Kaliski and Yin [7] have provided

basis conversion techniques in the extension field Fqm of Fq , where q is a prime power and m is a positive

integer. They have described the storage efficient conversion algorithms based on those techniques between

polynomial basis and normal basis.

The motivation for the present work comes from [3], in which Gashkov et al. proposed a storage efficient

basis conversion algorithm over a field of characteristic 7 in order to compute Tate pairing on hyperelliptic

curves of genus 3. For any odd prime p , the storage efficient conversion algorithms between the polynomial

and normal bases in the extension field Fpp over Fp have been proposed in [13]. The irreducible trinomial

f(x) = xp − x+ 1 over Fp was used to construct the extension field Fpp over Fp . In this paper, we generalize

the method given in [13] to the extension field Fqp over Fq , where p is an odd prime and q = pn with a positive

integer n . We provide the storage efficient basis conversion algorithms in Algorithms 1 and 2 in the extension

field Fqp over Fq . These algorithms efficiently convert the representation of an element in polynomial basis to

its representation in normal basis and vice versa without storage complexity.

The time complexity of an algorithm is approximately equal to the number of operations in the algorithm,

and the space complexity of an algorithm is equal to the number of memory cells that the algorithm needs.

Apart from the importance of the time complexity, its space complexity is also important. An efficient algorithm

keeps the time complexity and space complexity as low as possible. Therefore, reducing the time complexity

and/or space complexity of an algorithm is of vital importance from the implementation point of view.

This paper is organized as follows: Section 2 introduces basic definitions and gives conditions for the

trinomial f(x) = xp − x − a ∈ Fp[x] to be irreducible over Fq . Section 3 constructs the transition matrix M

and its inverse matrix M−1 without extra computation between normal and polynomial bases. Furthermore,

we provide free storage basis conversion algorithms between normal and polynomial bases. Finally, we compute

their complexities and compare them with previous results.

2. Preliminary

This section introduces basic definitions and results that will be used in the subsequent sections.

2.1. Finite field representations

For a prime p , the residue class ring Zp forms a finite field that is identified with the Galois field Fp with

p elements. To construct a finite extension field over Fp , one needs an irreducible polynomial over Fp . Let

g(x) = a0 + a1x + · · · + an−1x
n−1 + xn ∈ Fp[x] be a monic irreducible polynomial over Fp. Then the residue

class ring

Fp[x]/⟨f(x)⟩ = {c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1| ci ∈ Fp for 0 ≤ i ≤ n− 1} (1)

97



AKYILDIZ et al./Turk J Math

is a finite field with pn elements, where ⟨g(x)⟩ is the principal ideal generated by g in Fp[x] . A finite field in

(1) can be denoted by Fq , where q = pn . Up to isomorphism, there is a unique finite field with q elements;

however, Fq has various representations.

Throughout this paper, we consider a finite extension field Fqp defined over the ground field Fq , where

q = pn, gcd(p, n) = 1 and p is an odd prime. Let α ∈ Fqp be a root of irreducible polynomial f of degree p

over Fq . Then a basis of Fqp over Fq of the form {1, α, α2, . . . , αp−1} is called a polynomial basis and

Fqp = {c0 + c1α+ c2α
2 + · · ·+ cp−1α

p−1|ci ∈ Fq for 0 ≤ i ≤ p− 1}

is called the polynomial basis representation of Fqp . Let β ∈ Fqp be a root of irreducible normal polynomial f

of degree p over Fq . Then a basis of Fqp over Fq of the form {β, βq, βq2 , . . . , βqp−1} is called a normal basis of

Fqp over Fq and

Fqp = {c0 + c1β
q + c2β

q2 + · · ·+ cp−1β
qp−1

|ci ∈ Fq for 0 ≤ i ≤ p− 1}

gives the normal basis representation of Fqp . Note that an irreducible polynomial f of degree p over Fq is said

to be normal if all the distinct p roots of f form a normal basis of Fqp over Fq.

Definition 2.1 [8] Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 be an irreducible polynomial of degree n over

Fq with an ̸= 0 . Then the reciprocal of f , denoted by f∗ , is defined as

f∗(x) = xnf(
1

x
) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an.

Lemma 2.2 [8] The reciprocal of a monic irreducible polynomial over Fq is also an irreducible polynomial over

Fq .

An irreducible trinomial has a structure that makes it a good choice for representing the extension field. In

some cases, the degree of the middle term is relatively small compared to the polynomial degree. The reduction

operation is faster when an irreducible trinomial is used to construct the extension field. Therefore, choosing an

irreducible trinomial can lead to a faster arithmetic operation in the field (see for instance [4]). The following

theorem gives a necessary condition for a trinomial f(x) = xp − x− a ∈ Fq[x] to be irreducible over Fq.

Theorem 2.3 [8] Let a ∈ Fq and p be the characteristic of Fq. Then the trinomial f(x) = xp − x − a is

irreducible in Fq[x] if and only if TrFq/Fp
(a) ̸= 0 , where TrFq/Fp

is the absolute trace function from Fq to Fp .

In particular, f(x) = xp− x+1 is an irreducible polynomial over Fq , where q = pn if and only if TrFq/Fp
(1) =

n ̸= 0 if and only if gcd(p, n) = 1. Since f is irreducible over Fq with gcd(p, n) = 1, its reciprocal

f∗(x) = xp − xp−1 + 1 is also irreducible over Fq by Lemma 2.2. The following theorem gives the conditions

for an irreducible polynomial over Fq to be normal over Fq.

Theorem 2.4 [12] Let f be a monic irreducible polynomial of degree n over Fq and α be a root of f . Let

xn − 1 = (µ1(x)µ2(x) · · ·µr(x))
t
,

98



AKYILDIZ et al./Turk J Math

where µi is the distinct monic irreducible factors of xn − 1 for i ∈ {1, 2, . . . , r} and t ∈ Z+ . Suppose that µi

has degree di for i ∈ {1, 2, . . . , r} . Then f is normal over Fq if and only if

Lµ̄i(α) ̸= 0,

where µ̄i(x) =
xn−1
µi(x)

and Lµ̄i(x) is the linearized q -associate of µ̄i(x) for i ∈ {1, 2, . . . , r} .

2.2. Our method

Let α ∈ Fqp be a root of the irreducible trinomial f(x) = xp−x+1 over Fq. Then Fqp has the polynomial basis

ᾱ = {αp−1, . . . , α2, α, 1} over Fq. Note that the elements of polynomial basis are used in reverse order so that

the inverse of transition matrix can be easily computed (see in Section 3.2). By Theorem 2.4, f(x) = xp−x+1

is not normal over Fq but its reciprocal f∗(x) = xp−xp−1 +1, which is irreducible over Fq , is normal over Fq.

Since β = α−1 ∈ Fqp is a root of f∗ , its conjugates βqi are the distinct roots of f∗ for i ∈ {0, 1, . . . , p − 1} .

Then the row vector β̄ = {β, βq, . . . , βqp−1} is a normal basis of Fqp over Fq. In this case, each βqi is expressed

as a linear combination of αi for i ∈ {0, 1, . . . , p− 1} , which gives us the transition matrix M from polynomial

basis to normal basis of Fqp over Fq . Then we simply obtain the inverse of the transition matrix from normal

basis to polynomial basis of Fqp over Fq . Therefore, we provide free storage basis conversion algorithms between

polynomial basis ᾱ and normal basis β̄ .

3. Free storage basis conversion in finite fields

Basis conversion involves computing the representation of a field element from one basis to another basis. In

the present section, we describe our basis conversion method between polynomial basis and normal basis. Note

that all computations of our method are performed in the prime field Fp . Section 3.1 gives the relation between

the polynomial basis elements and normal basis elements, which produce the transition matrix M . The special

form of M provides a free storage basis conversion algorithm from polynomial basis to normal basis. In Section

3.2, the transition matrix M−1 is easily constructed by simple permutation operations from M . Similarly, the

special form of M−1 provides a free storage basis conversion algorithm from normal basis to polynomial basis.

Finally, Sections 3.3 and 3.4 give the complexities of these algorithms and comparison with the previous result,

respectively.

3.1. Conversion from polynomial basis to normal basis

Construction of transition matrix from polynomial basis to normal basis: The following lemma serves as a tool

to construct the transition matrix from polynomial basis to normal basis of Fqp over Fq .

Lemma 3.1 Let α ∈ Fqp be a root of the irreducible polynomial f(x) = xp − x + 1 over Fq , where q = pn .

Then we can see that αpi

= α− i for i ∈ N.

Proof. We use induction on i to show that αpi

= α− i for i ∈ N. For i = 1, αp = α− 1 since α is a root of

f in Fqp . By the freshman’s dream, since

αp2

= (αp)p = (α− 1)p = αp − 1 = α− 2,

99



AKYILDIZ et al./Turk J Math

then αpi

= α− i is also true for i = 2. Assume that the result αpi

= α− i is true for i = k . By the freshman’s

dream and the above assumption,

αpk+1

= (αpk

)p = (α− k)p = αp − k = α− (k + 1).

This proves that αpi

= α− i is true for i = k + 1. Thus, by induction, the result holds for i ∈ N. 2

The next theorem gives the transition matrix M from polynomial basis to normal basis of Fqp over Fq .

Theorem 3.2 Let Fqp be a finite extension field of Fq , where q = pn and gcd(p, n) = 1 for an odd prime p .

Let α ∈ Fqp be a root of f(x) = xp − x+ 1 ∈ Fq[x] and β = α−1 . Then the matrix

M =



−1 0 0 · · · 0 1
−1 −n −(n)2 · · · −(n)p−2 0
−1 −2n −(2n)2 · · · −(2n)p−2 0
...

...
...

. . .
...

...
−1 −(p− 2)n −((p− 2)n)2 · · · −((p− 2)n)p−2 0
−1 −(p− 1)n −((p− 1)n)2 · · · −((p− 1)n)p−2 0


∈ Fp×p

p (2)

is the transition matrix from the polynomial basis ᾱ = {αp−1, . . . , α2, α, 1} to the normal basis

β̄ = {β, βq, βq2 , . . . , βqp−1} of Fqp over Fq , where Fp×p
p represents the set of p× p matrices over Fp .

Before giving the proof, we introduce the following lemma to write βqi as a linear combination of αi for

i ∈ {0, 1, . . . , p− 1} .

Lemma 3.3 Let α ∈ Fqp be a root of the irreducible polynomial f(x) = xp − x + 1 over Fq and β = α−1 ,

where q = pn . Then β is a root of the irreducible normal polynomial f∗(x) = xp−xp−1+1 over Fq . Moreover,

βqi = 1− (α− in)p−1 for i ∈ {0, 1, . . . , p− 1} .

Proof. We first show that β = α−1 is a root of f∗. Since β ̸= 0 and α is a root of f ,

f∗(β) = βpf(
1

β
) = βpf(α) = 0.

Hence, β is a root of f∗. By Lemma 3.1, the second assertion can be shown as follows:

β = α−1 = 1− αp−1,

βq =
(
1− αp−1

)q
= 1− αq(p−1) = 1− (α− n)

p−1
,

βq2 =
(
1− (α− n)p−1

)q
= 1− (α− n)q(p−1) = 1− (αq − nq)p−1 = 1− (α− 2n)p−1,

βq3 =
(
1− (α− 2n)p−1

)q
= 1− (α− 2n)q(p−1) = 1− (αq − (2n)q)

p−1
= 1− (α− 3n)p−1,

...

βqp−1

=
(
1− (α− (p− 2)n)p−1

)q
= 1− (αq − ((p− 2)n)q)

p−1
= 1− (α− (p− 1)n)

p−1
.

100



AKYILDIZ et al./Turk J Math

Thus, the proof is complete. 2

We can also give the following lemma without proof (see for instance [13]).

Lemma 3.4 Let p be a prime number and j be an integer with 0 ≤ j ≤ p− 1 . Then the binomial coefficient(
p−1
j

)
≡ (−1)j mod p .

Now we can prove Theorem 3.2 by expressing βqi as a linear combination of αi for i ∈ {0, 1, . . . , p− 1} .

Proof of Theorem 3.2. By Lemma 3.3, each normal basis element can be written as βqi = 1 − (α − ni)p−1

for i ∈ {0, 1, . . . , p − 1} . For i = 0, we can write β = 1 − αp−1 . For i ∈ {1, 2, . . . , p − 1} , using binomial

expansion, we have

βqi = 1− (α− ni)p−1 = 1−
p−1∑
j=0

(
p− 1

j

)
αp−1−j(−ni)j

and by Lemma 3.4,

βqi ≡ 1−
p−1∑
j=0

(−1)jαp−1−j(−ni)j mod p.

Then since (in)p−1 ≡ 1 mod p , we get

βqi ≡ −
p−2∑
j=0

αp−1−j(in)j mod p

for i ∈ {1, . . . , p− 1} . Thus we have the following:

For i = 1, βq = −αp−1 − nαp−2 − n2αp−3 − · · · − np−2α,

For i = 2, βq2 = −αp−1 − (2n)αp−2 − (2n)2αp−3 − · · · − (2n)p−2α,
...

...

For i = p− 1, βqp−1

= −αp−1 − (p− 1)nαp−2 − ((p− 1)n)2αp−3 − · · · − ((p− 1)n)p−2α.

In view of the relation between the powers of α and β , we obtain the transition matrix M in (2) from ᾱ to β̄

of Fqp over Fq and this transition system is given as follows:


β
βq

...

βqp−2

βqp−1

 =


−1 0 0 · · · 0 1

−(n)0 −(n)1 −(n)2 · · · −(n)p−2 0
...

...
...

. . .
...

...
−((p− 2)n)0 −((p− 2)n)1 −((p− 2)n)2 · · · −((p− 2)n)p−2 0
−((p− 1)n)0 −((p− 1)n)1 −((p− 1)n)2 · · · −((p− 1)n)p−2 0

 ·


αp−1

αp−2

...
α
1

 (3)

or, equivalently, it is denoted by β̄ = M · ᾱ , where M ∈ Fp×p
p . Note that all the computations in M are

performed in Fp . 2

101



AKYILDIZ et al./Turk J Math

Free storage basis conversion algorithm from polynomial basis to normal basis: There exists transition matrix

M in (2) from polynomial basis ᾱ to normal basis β̄ . Now we give a free storage basis conversion algorithm

in Algorithm 1 to compute the normal basis representation of an element in Fqp from its polynomial basis

representation. Note that the special form of M provides Algorithm 1, which requires no storage complexity.

Let m ∈ Fqp . Then m is represented uniquely as a linear combination of the polynomial basis elements,

m = a1α
p−1 + a2α

p−2 + · · ·+ ap−1α+ ap , where ai ∈ Fq for i ∈ {1, 2, . . . , p} . Thus, the row vector

mᾱ = (a1, a2, . . . , ap)

is called the polynomial basis representation of m with ᾱ . Similarly, m can be represented uniquely as a linear

combination of the normal basis elements, m = b1β + b2β
q + · · ·+ bpβ

qp−1

, where bj ∈ Fq for j ∈ {1, 2, . . . , p} .
Then the row vector

mβ̄ = (b1, b2, . . . , bp)

is called the normal basis representation of m with β̄ . Let ᾱ[i] denotes the i -th component ai of mᾱ and β̄[j]

denotes the j -th component bj of mβ̄ for i, j ∈ {1, 2, . . . , p} . Suppose that mᾱ = (ᾱ[1], ᾱ[2], . . . , ᾱ[p]) is an

input of Algorithm 1. The conversion from polynomial basis representation of m to normal basis representation

of m is described in Algorithm 1, which requires no storage complexity. Note that all the computations in

Algorithm 1 are performed in Fp .

Algorithm 1 Polynomial basis to normal basis conversion

Input: mᾱ = (ᾱ[1], ᾱ[2], . . . , ᾱ[p])
Output: mβ̄ = (β̄[1], β̄[2], . . . , β̄[p])

1: z ← p−1
2

2: β̄[1]← ᾱ[p]− ᾱ[1]
3: for i = 1 to z do
4: y1 ← 0, y2 ← 0, x← 1, x1 ← 0, x2 ← 0,m← 1
5: for j = 1 to z do
6: y1 ← y1 − x · ᾱ[j]
7: y2 ← y2 − x · ᾱ[z + j]
8: x← i · n · x
9: x1 ← x1 −m · ᾱ[j]

10: x2 ← x2 −m · ᾱ[z + j]
11: m← −i · n ·m
12: end for
13: β̄[i+ 1]← y1 + x · y2
14: β̄[p− i+ 1]← x1 +m · x2

15: end for
16: return mβ̄

The following example shows the conversion from polynomial basis representation of m to normal basis

representation of m .

Example 3.5 Let q = 49 with p = 7 and n = 2 . Let α ∈ F497 be a root of the irreducible f(x) = x7−x+1 over

F49 and β ∈ F497 be a root of the normal irreducible polynomial f∗(x) = x7− x6 +1 over F49 where β = α−1 .

Then ᾱ = {α6, α5, α4, α3, α2, α, 1} is a polynomial basis and β̄ = {β, β49, β492 , β493 , β494 , β495 , β496} is a normal

102



AKYILDIZ et al./Turk J Math

basis of the extension field F497 over F49 . As Algorithm 1 runs for an input mᾱ = (a1, a2, a3, a4, a5, a6, a7) ,

one can obtain the following results:

β̄[1] = −ᾱ[1] + ᾱ[7],
β̄[2] = −ᾱ[1]− 2ᾱ[2]− 4ᾱ[3]− ᾱ[4]− 2ᾱ[5]− 4ᾱ[6],
β̄[3] = −ᾱ[1]− 4ᾱ[2]− 2ᾱ[3]− ᾱ[4]− 4ᾱ[5]− 2ᾱ[6],
β̄[4] = −ᾱ[1]− 6ᾱ[2]− ᾱ[3]− 6ᾱ[4]− ᾱ[5]− 6ᾱ[6],
β̄[5] = −ᾱ[1] + 6ᾱ[2]− ᾱ[3] + 6ᾱ[4]− ᾱ[5] + 6ᾱ[6],
β̄[6] = −ᾱ[1] + 4ᾱ[2]− 2ᾱ[3] + ᾱ[4]− 4ᾱ[5] + 2ᾱ[6],
β̄[7] = −ᾱ[1] + 2ᾱ[2]− 4ᾱ[3] + ᾱ[4]− 2ᾱ[5] + 4ᾱ[6].

Therefore, one gets the normal basis representation mβ̄ = (b1, b2, b3, b4, b5, b6, b7) in terms of the polynomial

basis representation of m . In fact, this gives us the following transition matrix, which corresponds to M in

Theorem 3.2 when n = 2 and p = 7 :



b1
b2
b3
b4
b5
b6
b7


=



−1 0 0 0 0 0 1
−1 −2 −4 −1 −2 −4 0
−1 −4 −2 −1 −4 −2 0
−1 −6 −1 −6 −1 −6 0
−1 −1 −1 −1 −1 −1 0
−1 −3 −2 −6 −4 −5 0
−1 −5 −4 −6 −2 −3 0


·



a1
a2
a3
a4
a5
a6
a7


. (4)

3.2. Conversion from normal basis to polynomial basis

Construction of transition matrix from normal basis to polynomial basis: To do conversion from the normal

basis β̄ to the polynomial basis ᾱ , one needs the inverse of the transition matrix M . Now we find the inverse

of M efficiently by permuting the rows of M. The following lemma is useful to find its inverse (see for instance

[13]).

Lemma 3.6 Let k be a positive integer and p be a prime number. Then we get

p−2∑
m=0

km ≡

{
−1 mod p if k ≡ 1 mod p,

0 mod p otherwise.

Theorem 3.7 The inverse of the transition matrix M in (2) is the following matrix

M−1 =


0 np−1 (2n)p−1 . . . ((p− 1)n)p−1

0 np−2 (2n)p−2 . . . ((p− 1)n)p−2

...
...

...
. . .

...
0 n 2n . . . (p− 1)n
1 1 1 . . . 1

 ∈ Fp×p
p , (5)

which is the transition matrix from the normal basis β̄ = {β, βq, βq2 , . . . , βqp−1} to the polynomial basis

ᾱ = {αp−1, . . . , α2, α, 1} of Fqp over Fq .

103



AKYILDIZ et al./Turk J Math

Proof. The transition matrix M ∈ Fp×p
p contains the following invertible submatrix

Q =


−1 −n −(n)2 · · · −(n)p−2

−1 −2n −(2n)2 · · · −(2n)p−2

...
...

...
. . .

...
−1 −(p− 2)n −((p− 2)n)2 · · · −((p− 2)n)p−2

−1 −(p− 1)n −((p− 1)n)2 · · · −((p− 1)n)p−2

 ∈ F(p−1)×(p−1)
p ,

which is the Vandermonde matrix. The i -th row Ri of the matrix Q consists of the entries −(ni)k for

k ∈ {0, 1, . . . , p− 2} . Therefore, for i, j ∈ {1, 2, . . . , p− 1} , the rows of Q can be represented as

Ri = −((ni)0, (ni)1, (ni)2, . . . , (ni)p−2),

Rj = −((nj)0, (nj)1, (nj)2, . . . , (nj)p−2).

By Lemma 3.6, the multiplication of these two rows can be obtained as follows:

Ri ·Rj = (n2ij)0 + (n2ij)1 + · · ·+ (n2ij)p−2 ≡

{
−1 mod p if n2ij ≡ 1 mod p,

0 mod p otherwise.

The above property allows us to find the inverse matrix Q−1 only by performing permutation on the rows of

Q such that the i -th column of Q−1 is equal to the negative of the transpose of the j -th row of Q , where

ij ≡ n−2 mod p. Therefore, the i -th column Ci of Q−1 can be written as

Ci = −RT
j (6)

where i ≡ j−1n−2 mod p, Rj represents the j -th row of Q , and RT
j denotes the transpose of Rj . This can

be expressed as follows. Using (6), Ci can be written as

Ci = ((ni−1n−2)0, (ni−1n−2)1, (ni−1n−2)2, . . . , (ni−1n−2)p−2)T

= ((n−1i−1)0, (n−1i−1)1, (n−1i−1)2, . . . , (n−1i−1)p−2)T

where all computations are performed modulo p . Then the following result

(n−1i−1)p−1 = (n−1i−1)p−2(n−1i−1)1 ≡ 1 mod p

gives that in = (n−1i−1)p−2 in modulo p . In the same way, we have

(in)2 = (n−1i−1)p−3,

(in)3 = (n−1i−1)p−4,

(in)4 = (n−1i−1)p−5,

...

(in)p−3 = (n−1i−1)2,

(in)p−2 = (n−1i−1)1,

(in)p−1 = (n−1i−1)0.

104



AKYILDIZ et al./Turk J Math

Then the i -th column of Q−1 can be given as Ci =
(
(in)p−1, (in)p−2, . . . , (in)2, (in)1

)T
. Therefore, we get

Q−1 =


np−1 (2n)p−1 (3n)p−1 . . . ((p− 1)n)p−1

np−2 (2n)p−2 (3n)p−2 . . . ((p− 1)n)p−2

...
...

...
. . .

...
n2 (2n)2 (3n)2 . . . ((p− 1)n)2

n 2n 3n . . . (p− 1)n

 ∈ F(p−1)×(p−1)
p . (7)

We can obtain the inverse matrix M−1 in (5) by the following three steps:

• the entries of the first column of M−1 are all 0 except the last one,

• the last row of M−1 consists of 1’s,

• the rest of the M−1 is Q−1 in (7).

Thus, the transition matrix M−1 from normal basis to polynomial basis of Fqp over Fq is obtained and this

transition system is given as follows:


αp−1

αp−2

...
α
1

 =


0 np−1 (2n)p−1 . . . ((p− 1)n)p−1

0 np−2 (2n)p−2 . . . ((p− 1)n)p−2

...
...

...
. . .

...
0 n 2n . . . (p− 1)n
1 1 1 . . . 1

 ·


β
βq

...

βqp−2

βqp−1

 (8)

or, equivalently, it is denoted by ᾱ = M−1 · β̄ where M−1 ∈ Fp×p
p . 2

The complexity of construction M−1 from M is given as follows: To obtain the inverse transition matrix

M−1 ∈ Fp×p
p , it is enough to compute i ≡ j−1n−2 mod p , where i, j ∈ {1, 2, . . . , p − 1} in the computation

point of view. We can use the extended Euclidean algorithm to compute i ≡ j−1n−2 mod p with O(log3 p)

operations under big-O notation. Since there exist p − 1 columns of Q−1 , the complexity of finding i ’s is

O(p log3 p). Therefore, the computational complexity of M−1 is O(p log3 p).

The following example illustrates how to find the inverse of M efficiently.

Example 3.8 Let q = 25 with p = 5 and n = 2 . Let α ∈ F255 be a root of the irreducible polynomial

f(x) = x5 − x + 1 ∈ F25[x] and β = α−1 ∈ F255 be a root of irreducible polynomial f∗(x) = x5 − x4 + 1

over F25 . Then the transition matrix M from the polynomial basis {α4, α3, α2, α, 1} to the normal basis

{β, β25, β252 , β253 , β254} of F255 over F25 is given by

M =


−1 0 0 0 1
−1 −2 −4 −3 0
−1 −4 −1 −4 0
−1 −1 −1 −1 0
−1 −3 −4 −2 0

 ∈ F5×5
5 .

105



AKYILDIZ et al./Turk J Math

Then the 4× 4 invertible submatrix Q is

Q =


−1 −2 −4 −3
−1 −4 −1 −4
−1 −1 −1 −1
−1 −3 −4 −2

 ∈ F4×4
5 .

Let Ci be the i-th column of Q−1and Rj be the j -th row of Q . Then using the relation ij ≡ 2−2 ≡ 4 mod 5

for i, j ∈ {1, . . . , 4} , one can get

C4 = −RT
1 , C2 = −RT

2 , C3 = −RT
3 and C1 = −RT

4 .

Then we have the inverse matrix

Q−1 =


1 1 1 1
3 4 1 2
4 1 1 4
2 4 1 3

 ∈ F4×4
5 , which gives M−1 =


0 1 1 1 1
0 3 4 1 2
0 4 1 1 4
0 2 4 1 3
1 1 1 1 1

 ∈ F5×5
5 .

Free storage basis conversion algorithm from normal basis to polynomial basis: There exists inverse transition

matrix M−1 as in (8) from the normal basis β̄ to the polynomial basis ᾱ . In this section, we give a free storage

basis conversion algorithm in Algorithm 2 to compute the polynomial basis representation of an element in Fqp

from its normal basis representation. The special form of M−1 provides Algorithm 2, which requires no storage

complexity. Suppose that mβ̄ = (β̄[1], β̄[2], . . . , β̄[p]) is an input of Algorithm 2. The conversion from normal

basis representation of m to polynomial basis representation of m is described in Algorithm 2. Note that all

the computations in Algorithm 2 are performed in Fp .

Algorithm 2 Normal basis to polynomial basis conversion

Input: mβ̄ = (β̄[1], β̄[2], . . . , β̄[p])
Output: mᾱ = (ᾱ[1], ᾱ[2], . . . , ᾱ[p])
1: z ← p−1

2

2: ᾱ[p]← β̄[p]
3: for i =1 to z do
4: ᾱ[p]← ᾱ[p] + β̄[i] + β̄[p− i]
5: x← 1,m← 1
6: for j=1 to p-1 do
7: x← i · n · x
8: m← −i · n ·m
9: if i = 1 then y ← 0

10: else y ← ᾱ[p− j]
11: end if
12: ᾱ[p− j]← y +m · β̄[p− i+ 1] + x · β̄[i+ 1]
13: end for
14: end for
15: return mᾱ

The following example shows the conversion from normal basis representation of m to polynomial basis

representation of m .

106



AKYILDIZ et al./Turk J Math

Example 3.9 We consider the irreducible polynomial f(x) = x7−x+1 over F49 in Example 3.5. As Algorithm

2 runs for an input mβ̄ = (b1, b2, b3, b4, b5, b6, b7) , it gives the following results:

ᾱ[1] = β̄[2] + β̄[3] + β̄[4] + β̄[5] + β̄[6] + β̄[7],

ᾱ[2] = 4β̄[2] + 2β̄[3] + 6β̄[4]− 6β̄[5]− 2β̄[6]− 4β̄[7],

ᾱ[3] = 2β̄[2] + 4β̄[3] + β̄[4] + β̄[5] + 4β̄[6] + 2β̄[7],

ᾱ[4] = β̄[2] + β̄[3] + 6β̄[4]− 6β̄[5]− β̄[6]− β̄[7],

ᾱ[5] = 4β̄[2] + 2β̄[3] + β̄[4] + ᾱ[5] + 2β̄[6] + 4β̄[7],

ᾱ[6] = 2β̄[2] + 4β̄[3] + 6β̄[4]− 6β̄[5]− 4β̄[6]− 2β̄[7],

ᾱ[7] = β̄[1] + β̄[2] + β̄[3] + β̄[4] + β̄[5] + β̄[6] + β̄[7].

Therefore, we get the polynomial basis representation mᾱ = (a1, a2, a3, a4, a5, a6, a7) in terms of the normal

basis representation of m . In fact, this gives us the following transition matrix M−1 , which is the inverse of

M in (4) in Example 3.5: 

a1
a2
a3
a4
a5
a6
a7


=



0 1 1 1 1 1 1
0 4 2 6 1 5 3
0 2 4 1 1 4 2
0 1 1 6 1 6 6
0 4 2 1 1 2 4
0 2 4 6 1 3 5
1 1 1 1 1 1 1


·



b1
b2
b3
b4
b5
b6
b7


. (9)

It can be easily verified whether transition matrix M−1 in (9) from β̄ to ᾱ is the inverse of the transition

matrix M in (4) from ᾱ to β̄ .

3.3. Complexities of proposed algorithms

This section gives the time complexities of Algorithms 1 and 2 in terms of the required number of field operations

over Fp . Let Fpn be an extension field of degree n over Fp and {α1, α2, . . . , αn} be a basis of Fpn over Fp .

Then k ∈ Fpn can be written uniquely k = a1α1 + a2α2 + · · · + anαn as a linear combination of the basis

elements where ai ∈ Fp for i ∈ {1, 2, . . . , n}. Therefore, there exist n components of the representation of

k ∈ Fpn over Fp . We assume that the addition and subtraction operations are the same in terms of the time

estimate.

The complexities of Algorithms 1 and 2: Let A denotes the required number of additions and M

denotes the required number of multiplications in prime field Fp . We know that {y1, y2, x, x1, x2,m} ⊂
Fp and ᾱ[i], β̄[j] ∈ Fpn for i, j ∈ {1, 2, . . . , p} . Note that for i, j ∈ {1, 2, . . . , p} , the elements ᾱ[i] =

(ᾱ[i]1, ᾱ[i]2, . . . , ᾱ[i]n) and β̄[j] = (β̄[j]1, β̄[j]2, . . . , β̄[j]n) are coordinates in Fpn of the vectors mᾱ = (ᾱ[1], ᾱ[2],

. . . , ᾱ[p]) and mβ̄ = (β̄[1], β̄[2], . . . , β̄[p]) , where the elements ᾱ[i]k, β̄[j]k ∈ Fp for k ∈ {1, 2, . . . , n} .

In Algorithm 1: There exist n field additions over Fp in Step 2. For each j ∈ {1, . . . , p−1
2 } , the required

number of field additions and multiplications over Fp is equal to 4n and 4n + 4, respectively. For each

107



AKYILDIZ et al./Turk J Math

i ∈ {1, . . . , p−1
2 } , in addition to the above operations, there are two multiplications and two additions in Fp .

Therefore, the required number of field addition and multiplication operations over Fp in Algorithm 1 are given

by

A = p−1
2

(
p−1
2 4n+ 2

)
+ n = np2 − p(2n− 1) + 2n− 1,

M = p−1
2

(
p−1
2 (4n+ 4) + 2

)
= p2(n+ 1)− p(2n+ 1) + n.

Under big-O notation, the required number of field operations over Fp in Algorithm 1 is O(np2). Similarly, one

can easily compute the required number of field operations over Fp in Algorithm 2. Then the required number

of field addition and multiplication operations over Fp are given by

A = p−1
2 ((p− 1)2n+ 2n) = np2 − np,

M = p−1
2 ((p− 1)(2n+ 4)) = p2(n+ 2)− p(2n+ 4) + n+ 2.

Under big-O notation, the required number of field operations over Fp in Algorithm 2 is O(np2).

3.4. Comparison with previous result

There are some conversion algorithms in the literature from polynomial basis to normal basis and vice versa in

a general extension field. The storage-efficient basis conversion algorithm in the extension field was proposed in

[7]. Moreover, we propose a free storage basis conversion algorithm over a special extension field. To the best

of our knowledge in the literature in terms of storage complexity of algorithm, there is no such basis conversion

algorithm over an extension field. Although both the algorithm in [7] and the proposed one in this paper

have approximately the same time complexity, the latter has no storage requirements. Note that our proposed

algorithm computes Tate pairing on elliptic and hyperelliptic curves of genus 3 without any storage while the

method in [7] computes it with a huge storage complexity. This makes the proposed algorithm usable in some

implementation platforms. The following Table gives the results in [7] for the general extension field and our

results for the special extension field.

Table. Complexity of basis conversion over finite field.

Algorithm Storage complexity Time complexity Field, q = pn

[7] O(mn log p) O(mn log p) Fqm

Proposed O(1) O(p2n) Fqp

4. Conclusion

In this paper, we propose storage efficient techniques for conversion from polynomial basis to normal basis and

vice versa in the special extension field Fqp . The transition matrix M is of special form and then its inverse

M−1 can be obtained efficiently by performing the rows of M . The special forms of these transition matrices

provide storage efficient conversion algorithms to convert the representation of a field element from polynomial

basis to normal basis and vice versa, which require no storage complexity.

108



AKYILDIZ et al./Turk J Math

Acknowledgment

This paper is a part of the MS thesis of the second author under the supervision of the first author at the

Institute of Applied Mathematics at Middle East Technical University, 2014. The second author is supported

by Yurtdışı Türkler ve Akraba Topluluklar Başkanlığı. The third author is partially supported by the Scientific

and Technological Research Council of Turkey (TÜBİTAK)-BİDEB 2211 program.

We would like to thank to the anonymous reviewers for their valuable comments and suggestions to

improve the quality of the paper. We are deeply grateful to Sedat Akleylek for his valuable discussions and

suggestions that contributed greatly to the presentation and quality of the paper. Lastly, we owe Fuat Erdem

a debt of gratitude for his valuable corrections on the typos and the language of the paper.

References

[1] Akleylek S. On the representation of finite fields. PhD, Middle East Technical University, Ankara, Turkey, 2010.

[2] Akleylek S, Cenk M, Özbudak F. Polynomial multiplication over binary fields using Charlier polynomial represen-

tation with low space complexity. In: Gong G, Gupta KC, editors. 11th International Conference on Cryptology-

INDOCRYPT 2010 in India; 12–15 December 2010; Hyderabad, India. Berlin, Germany: Springer, 2010, pp.

227-237.

[3] Gashkov SB, Bolotov AA, Burtsev AA, Zhebet SY, Frolov AB. On hardware and software implementation of

arithmetic in finite fields of characteristic 7 for calculation of Pairings. J Math Sci-Univ Toky 2010; 168: 49-75.

[4] Gathen JVZ. Irreducible trinomials over finite fields. Math Comput 2002; 72: 1987-2000.

[5] Guajardo J, Paar C. Itoh-Tsujii inversion in standard basis and its application in Cryptography and Codes. Design

Code Cryptogr 2002; 25: 207-216.

[6] Hankerson D, Menezes A, Vanstone S. Guide to Elliptic Curve Cryptography. New York, NY, USA: Springer Science

& Business Media, 2006.

[7] Kaliski BS, Yin YL. Storage efficient finite fields basis conversion. In: Tavares S, Meijer H, editors. Proceedings

of the Selected Areas in Cryptography-SAC ’98; 17–18 August 1998; Kingston, ON, Canada. Berlin, Germany:

Springer-Verlag, 1999, pp. 81-93.

[8] Lidl R, Niederreiter H. Introduction to Finite Fields and Its Applications. Cambridge, UK: Cambridge University

Press, 1997.

[9] Menezes A, Blake I, Gao X, Mullen R, Vanstone S, Yaghobian T. Applications of Finite Fields. Boston, MA, USA:

Kluwer Academic, 1993.

[10] Muchtadi-Alamsyah I, Yuliawan F. Basis conversion in composite field. International Journal of Mathematics and

Computation 2013; 11-17.

[11] Özbudak F, Akleylek S, Cenk M. A new representation of elements in binary fields with subquadratic space

complexity multiplication of polynomials. Ieice T Fund Electr 2013; 96-A: 2016-2024.

[12] Schwarz S. Irreducible polynomials over finite fields with linearly independent roots. Math Slovaca 1988; 38: 147-158.

[13] Sial MR, Akyıldız E. Storage free basis conversion over composite finite fields of odd characteristics. Proceedings

of 6th International Conference on Information Security and Cryptology-ISCTURKEY; 20–21 September 2013;

Ankara, Turkey. 2013, pp. 199-204.

109

http://dx.doi.org/10.1007/978-3-642-17401-8_17
http://dx.doi.org/10.1007/978-3-642-17401-8_17
http://dx.doi.org/10.1007/978-3-642-17401-8_17
http://dx.doi.org/10.1007/978-3-642-17401-8_17
http://dx.doi.org/10.1007/s10958-010-9974-1
http://dx.doi.org/10.1007/s10958-010-9974-1
http://dx.doi.org/10.1090/S0025-5718-03-01515-1
http://dx.doi.org/10.1023/A:1013860532636
http://dx.doi.org/10.1023/A:1013860532636
http://dx.doi.org/10.1007/3-540-48892-8_7
http://dx.doi.org/10.1007/3-540-48892-8_7
http://dx.doi.org/10.1007/3-540-48892-8_7
http://dx.doi.org/10.1007/978-1-4757-2226-0
http://dx.doi.org/10.1007/978-1-4757-2226-0

	Introduction
	Preliminary
	Finite field representations
	Our method

	Free storage basis conversion in finite fields 
	Conversion from polynomial basis to normal basis
	Conversion from normal basis to polynomial basis
	Complexities of proposed algorithms 
	Comparison with previous result

	Conclusion

