Yazar "Yesilot, Sukriye" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anticancer Effects of Vitis vinifera L. Mediated Biosynthesized Silver Nanoparticles and Cotreatment with 5 Fluorouracil on HT-29 Cell Line(Springernature, 2022) Salman, Giray; Pehlivanoglu, Suray; Acar, Cigdem Aydin; Yesilot, SukriyeThe aim of this study was to evaluate the anticancer effects of biosynthesized silver nanoparticles (Vv-AgNPs) from grape (Vitis vinifera L.) seed aqueous extract, alone or in combination with 5-Fluorouracil (5-FU) on HT-29 cell line. Vv-AgNPs were characterized by techniques such as UV-vis spectrophotometer (surface plasmon peak 454 nm), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). HT-29 cells were treated with different concentrations (0-80 mu g/mL for MTT) and (0-20 mu g/mL for BrdU) of Vv-AgNPs alone and combined with (200 mu g/mL) 5-FU for 72 h. The cytotoxic effects were analyzed by [3-(4,5-dimethylthiazol-2- yl)-2,5-diphenyl tetrazolium bromide] (MTT) assay (IC50 values 13.74 and 5.35 mu g/mL, respectively). Antiproliferative effects were examined 5-bromo-2'-deoxyuridine (BrdU) assay (IC50 values 9.65 and 5.00 mu g/mL, respectively). Activation of caspase-3 and protein expression levels of p53 were determined by Western blotting analysis. It was observed that Vv-AgNPs significantly increased the cleavage of the proapoptotic proteins caspase 3 and obviously enhanced the expression of p53 in a dose-dependent manner. The increased amount of total oxidant status (TOS) in the 10 mu g/mL Vv-AgNPs + 5-FU treatment group, despite the increasing amount of total antioxidant status (TAS), caused an increase in Oxidative Stress Index (OSI) compared to the control. In this study, it has been shown in vitro that the use of successfully biosynthesized Vv-AgNPs in combination with 5-FU exhibits synergistic cytotoxic, antiproliferative, apoptotic, and oxidative effects against HT-29 cell line.Öğe Green and eco-friendly biosynthesis of zinc oxide nanoparticles using Calendula officinalis flower extract: Wound healing potential and antioxidant activity(Wiley, 2023) Acar, Cigdem Aydin; Gencer, Muhammet Abdurrahim; Pehlivanoglu, Suray; Yesilot, Sukriye; Donmez, SonerThis study aimed to produce zinc oxide nanoparticles with Calendula officinalis flower extract (Co-ZnO NPs) using the green synthesis method. In addition, the antioxidant and wound healing potential of synthesized ZnO NPs were evaluated. The absorbance band at 355 nm, which is typical for ZnO NPs, was determined from the UV-Vis absorbance spectrum. The energy-dispersive X-ray spectroscopy (EDS) measurements revealed a high zinc content of 42.90%. The x-ray diffractometer data showed Co-ZnO NPs with an average crystallite size of 17.66 nm. The Co-ZnO NPs did not have apparent cytotoxicity up to 10 mu g/mL (IC50 25.96 mu g/mL). C. officinalis ZnO NPs showed partial cell migration and percent wound closure (69.1%) compared with control (64.8%). In addition, antioxidant activities of Co-ZnO NPs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2 diphenyl-1 picrylhydrazil (DPPH) were evaluated and radical scavenging activity of 33.49% and 46.63%, respectively, was determined. These results suggest that C. officinalis extract is an effective reducing agent for the green synthesis of ZnO NPs with significant antioxidant and wound healing potential.Öğe Microwave-assisted biofabrication of silver nanoparticles using Helichrysum arenarium flower extract: characterization and biomedical applications(Springer Heidelberg, 2023) Acar, Cigdem Aydin; Pehlivanoglu, Suray; Yesilot, Sukriye; Uzuner, Sezin YakutIn the treatment of melanoma, the prevention of metastasis and elimination of the risk of infection due to chemotherapy are of great importance. Therefore, the goal of this study was to develop an alternative treatment method with antibacterial properties for melanoma. Silver nanoparticles (AgNPs) were obtained by the biological method using Helichrysum arenarium flower extract in an easy, low-cost, and environmentally friendly manner. Characterization of synthesized AgNPs was performed using a UV-visible spectrophotometer (UV-Vis), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDS). The melanoma (SK-MEL-30) cancer cell line was used to determine the anticancer and antimetastatic activity of AgNPs synthesized with H. arenarium (Ha-AgNPs) extract. Cytotoxicity was tested with a fibroblast cell line (L929). Cell viability was determined by MTT assay, antioxidant activity by H2O2 radical scavenging assay, antibacterial activity by the disc diffusion method, and biocompatibility by the hemolysis test. Ha-AgNPs showed a maximum peak at 427 nm absorbance. The elemental composition of Ha-AgNPs was determined by EDS, and the existence of silver was confirmed. The biosynthesized Ha-AgNPs significantly inhibited the growth of medically important pathogenic, Gram-negative multidrug-resistant Escherichia coli, Gram-positive Staphylococcus aureus, and Gram-positive multidrug-resistant Enterococcus faecalis. MTT assay revealed dose-dependent manner anticancer activity of Ha-AgNPs on SK-MEL-30 (melanoma cancer cell line) cells in the concentration range of 0-100 mu g/mL (IC50 value: 35.52 mu g/mL). The cytotoxicity assay on L929 cells revealed no adverse effects of Ha-AgNPs on healthy cells in the concentration range of 0-25 mu g/mL (IC50: 47.9 mu g/mL). Additionally, antioxidant activity and biocompatibility of Ha-AgNPs were evaluated. AgNPs synthesized by H. arenarium have a promising future as a potent anticancer and antimetastatic agent with antibacterial properties.