Yazar "Aksoy, Hulya" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effect of progesterone on systemic inflammation and oxidative stress in the rat model of sepsis(Medknow Publications & Media Pvt Ltd, 2014) Aksoy, Ayse Nur; Toker, Aysun; Celik, Muhammet; Aksoy, Mehmet; Halici, Zekai; Aksoy, HulyaObjectives: To explore the protective effect of progesterone on inflammation and oxidative stress in a rat model of sepsis created by cecal ligation and puncture (CLP). Materials and Methods: Rats were randomly divided into 4 groups: Overiectomy group (OVX), sham operated (control), sepsis (CLP) group and progesterone-treated CLP group (CLP+ progesterone). The rats in CLP+ progesterone group received intraperitoneal progesterone (2 mg/kg). Cardiac blood samples were obtained for the measurement levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha). Tissue samples, including liver, kidney and uterus of rats were prepared to determine activities of myeloperoxidase (MPO), glutathione peroxidase (GPx) and levels of malondialdehyde (MDA). Results: Increased serum IL-6 and TNF-alpha levels were found in the CLP group in comparison with the control group (P = 0.01, P = 0.02; respectively). In CLP+ progesterone group, mean MDA concentration of kidney tissue was significantly lower than in CLP group (P = 0.003). Liver MDA concentration of the CLP+ progesterone group was not significantly different from that of the control group. While there were no significant differences among groups regarding liver MPO; in the CLP group, MPO activity in kidney (P = 0.02) and uterine tissues (P = 0.03) were found to be significantly higher compared to the control group. In CLP+ progesterone group, mean MPO activities of all tissues were not different than those of control group. The uterine tissue GPx activity in the CLP+ progesterone group was not statistically significantly different from control group. Conclusions: We suggest that progesterone ameliorates sepsis syndrome by reduction of the inflammatory cytokines IL-6 and TNF-alpha, and by restoration of antioxidant enzyme activities in some tissues.Öğe Oxidative stress and insulin resistance in policemen working shifts(Springer, 2016) Demir, Irfan; Toker, Aysun; Zengin, Selcuk; Laloglu, Esra; Aksoy, HulyaShift work is a work schedule involving irregular or unusual hours, compared to those of a normal daytime work schedule. In developed countries, night shift work is very common. In several cities of our country, 12/24 shift system is implemented in police organization. While night shift work composes half of the 20 shift in a month, in ergonomic shift system, an alternative shift schedule, shift work can be performed in three shifts in a day. In this study, we aimed to investigate the effects of 12/24 shift work system on insulin resistance and oxidative stress and systemic inflammation. Two hundred and four 12/24 shift workers (age 44.3 +/- A 5.6 years) and 193 ergonomic shift workers (age 42.6 +/- A 5.5 years) were included to study. Serum oxidized LDL (ox-LDL), neutrophil gelatinase lipocalin-2 (NGAL) as oxidative stress markers, glucose, insulin, ferritin, high-sensitive C-reactive protein (hsCRP) and erythrocyte sedimentation rate values were measured. Homeostasis model assessment for insulin resistance (HOMA-IR) was calculated to evaluate insulin resistance. Serum ox-LDL, HOMA-IR, hsCRP and NGAL levels in 12/24 shift system were found to be significantly higher compared with ergonomic shift workers (p < 0.0001, p = 0.02, p = 0.03, p = 0.02, respectively). When evaluated all subjects, weak but significant correlation was found between HOMA-IR with ox-LDL (r = 0.12, p = 0.01), hsCRP (r = 0.17, p = 0.001) and ferritin (r = 0.15, r = 0.003). Also in 12/24 shift work group, there were significant correlations between HOMA-IR with hsCRP (r = 0.17, p = 0.01) and ferritin (r = 0.25, p = 0.0001). It may be concluded that 12/24 shift system might give rise to insulin resistance and oxidative stress. Additionally, workers in this system may under risk of systemic inflammatory response. Working hours must be arranged in accordance with the physiological rhythm.