Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Althoey, Fadi" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II)
    (De Gruyter Poland Sp Z O O, 2023) Ahmad, Jawad; Althoey, Fadi; Abuhussain, Mohammed Awad; Deifalla, Ahmed Farouk; Ozkilic, Yasin Onuralp; Rahmawati, Cut
    Concrete is the most frequently employed man-made material in modern building construction. Nevertheless, the serviceability of concrete structures has been significantly reduced owing to a variety of durability issues, especially when serving in a non-ideal environment and exposed to internal/external attacks such as chloride penetration, carbonation, sulfate, and so on. Several scholars have performed numerous studies on the strength and microstructure features of volcanic ash (VA) concrete and have discovered encouraging findings. However, since the information is spread, readers find it difficult to evaluate the benefits of VA-based concrete, limiting its applicability. As a result, a detailed study is required that offers the reader an easy approach and highlights all essential facts. The goal of this article (Part ?) is to conduct a compressive review of the physical and chemical aspects of VA and its impact on concrete durability and microstructure properties. The findings demonstrate that VA considerably improves concrete durability owing to pozzolanic reaction and micro-filling voids in concrete materials. Cost-benefit analysis shows that 10% utilization of VA as cement decreased the overall cost by 30%. The assessment also notes a research gap that must be filled before VA may be utilized in practice.
  • Küçük Resim Yok
    Öğe
    Durability and microstructure analysis of concrete made with volcanic ash: A review (Part II)
    (De Gruyter Poland Sp Z O O, 2023) Ahmad, Jawad; Althoey, Fadi; Abuhussain, Mohammed Awad; Deifalla, Ahmed Farouk; Ozkilic, Yasin Onuralp; Rahmawati, Cut
    Concrete is the most frequently employed man-made material in modern building construction. Nevertheless, the serviceability of concrete structures has been significantly reduced owing to a variety of durability issues, especially when serving in a non-ideal environment and exposed to internal/external attacks such as chloride penetration, carbonation, sulfate, and so on. Several scholars have performed numerous studies on the strength and microstructure features of volcanic ash (VA) concrete and have discovered encouraging findings. However, since the information is spread, readers find it difficult to evaluate the benefits of VA-based concrete, limiting its applicability. As a result, a detailed study is required that offers the reader an easy approach and highlights all essential facts. The goal of this article (Part ?) is to conduct a compressive review of the physical and chemical aspects of VA and its impact on concrete durability and microstructure properties. The findings demonstrate that VA considerably improves concrete durability owing to pozzolanic reaction and micro-filling voids in concrete materials. Cost-benefit analysis shows that 10% utilization of VA as cement decreased the overall cost by 30%. The assessment also notes a research gap that must be filled before VA may be utilized in practice.
  • Küçük Resim Yok
    Öğe
    Performance of lightweight foamed concrete partially replacing cement with industrial and agricultural wastes: Microstructure characteristics, thermal conductivity, and hardened properties
    (Elsevier, 2023) Mydin, Md Azree Othuman; Sor, Nadhim Hamah; Althoey, Fadi; Ozkilic, Yasin Onuralp; Abdullah, Mohd Mustafa Al Bakri; Isleem, Haytham F.; Deifalla, Ahmed Farouk
    The production of eco-friendly concrete has been made possible by reusing agricultural and industrial wastes. This paper presents an experimental investigation of the characteristics of lightweight foamed concrete (LWF) produced from a protein-based foaming agent and including granulated blast furnace slag (GGBS), fly ash (FA), rice husk ash (RHA) and palm oil fuel ash (POFA) at various substitution levels (0, 10 %, 20 %, 30 %, 40 %, 50 %, and 60 %) with cement. By executing a slump test, the fresh characteristics of mixes were assessed. In addition, a total of 25 different LWF mixtures were produced and tested for their porosity, bulk density, compressive strength, bending strength, splitting tensile strength, water absorption, ultrasonic pulse velocity (UPV), and thermal conductivity. To elucidate the causes for the experimental findings acquired, microstructural analysis was also performed. The findings indicate that the GGBS, FA, RHA, and POFA ratios of the LWFs increased due to a reduction in slump, porosity, water absorption, bulk density, and thermal conductivity up to 40 % GGBS, 30 % FA, 20 % RHA, and 30 % POFA. However, the compressive strength, bending strength, splitting tensile strength, UPV were raised up to 40 % GGBS, 30 % FA, 20 % RHA and 30 % POFA as substitution for cement. LWF containing 40 % GBS as a cement substitution also demonstrate larger compressive strength, bending strength, splitting tensile strength, and ultrasonic pulse velocity in comparison with the control, 30 % FA, 20 % RHA, and 30 % POFA LWF. The findings are promising and reveal a major opportunity for developing eco-friendly LWF by partially substituting cement with GGBS and FA industrial by-product material, RHA and POFA agricultural waste materials as well.
  • Küçük Resim Yok
    Öğe
    Prediction models for marshall mix parameters using bio-inspired genetic programming and deep machine learning approaches: A comparative study
    (Elsevier, 2023) Althoey, Fadi; Akhter, Muhammad Naveed; Nagra, Zohaib Sattar; Awan, Hamad Hassan; Alanazi, Fayez; Khan, Mohsin Ali; Javed, Muhammad Faisal
    This research study utilizes four machine learning techniques, i.e., Multi Expression programming (MEP), Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Ensemble Decision Tree Bagging (DT-Bagging) for the development of new and advanced models for prediction of Marshall Stability (MS), and Marshall Flow (MF) of asphalt mixes. A compre-hensive and detailed database of 343 data points was established for both MS and MF. The predicting variables were chosen among the four most influential, and easy-to-determine pa-rameters. The models were trained, tested, validated, and the outcomes of the newly developed models were compared with actual outcomes. The root squared error (RSE), Nash-Sutcliffe effi-ciency (NSE), mean absolute error (MAE), root mean square error (RMSE), relative root mean square error (RRMSE), regression coefficient (R2), and correlation coefficient (R), were all used to evaluate the performance of models. The sensitivity analysis (SA) revealed that in the case of MS, the rising order of input significance was bulk specific gravity of compacted aggregate, Gmb (38.56 %) > Percentage of Aggregates, Ps (19.84 %) > Bulk Specific Gravity of Aggregate, Gsb (19.43 %) > maximum specific gravity paving mix, Gmm (7.62 %), while in case of MF the order followed was: Ps (36.93 %) > Gsb (14.11 %) > Gmb (10.85 %) > Gmm (10.19 %). The outcomes of parametric analysis (PA) consistency of results in relation to previous research findings. The DT-Bagging model outperformed all other models with values of 0.971 and 0.980 (R), 16.88 and 0.24 (MAE), 28.27 and 0.36 (RMSE), 0.069 and 0.041 (RSE), 0.020 and 0.032 (RRMSE), 0.010
  • Küçük Resim Yok
    Öğe
    The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity
    (Elsevier, 2023) Ozkilic, Yasin Onuralp; Celik, Ali Ihsan; Tunc, Ufuk; Karalar, Memduh; Deifalla, Ahmed; Alomayri, Thamer; Althoey, Fadi
    The influence of waste glass aggregate (WGA) with fly ash in certain proportions was studied by different amounts of molarity and WGA proportion on geopolymer concrete (GPC). For this aim, the molarity values of the NaoH concentration consumed in this investigation were determined as 11, 13 and 16. At the end of the examinations, work-ability, setting time, compression strength (CS) test, splitting tensile (ST) tests and flexural strength (FS) tests are performed. The conclusions demonstrated that the slump values increased as the molarity increased and waste glass (WG) percentages decreased. While concerning CS, ST and FS examinations, as the proportion in the combination was increased, these test results tend to decrease correspondingly. While the proportion of molarity of NaOH proportion was altered from 11 to 13 and 13 to 16, these test results tend to increase. This examination study demonstrates that glass aggregate had also a slight adverse influence on capacity and workability. Moreover, the use of 10% glass aggregate with NaOH molarity of 16 is suggested to gain the optimum sustainable GPC considering both fresh and hardening properties as the combined influence of WGA and NaOH molarity. Furthermore, in this examination, the offered strength models are established and related to those built on several standard codes. More importantly is that an equation is derived to predict the compressive strength of the geopolymer mixture utilized in this study. Additionally, scanning electron microscopy (SEM) analysis was achieved on the example parts attained from GPC examples formed with WGA.(c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder