Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Basaran, Bogachan" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Application of waste ceramic powder as a cement replacement in reinforced concrete beams toward sustainable usage in construction
    (Elsevier, 2023) Aksoylu, Ceyhun; Oztilic, Yasin Onuralp; Bahrami, Alireza; Yildizel, Sadik Alper; Hakeem, Ibrahim Y.; Ozdoner, Nebi; Basaran, Bogachan
    The main purpose of this study was to investigate the flexural behavior of reinforced concrete beams (RCBs) containing waste ceramic powder (CP) as partial replacement of cement. For this purpose, flexural tests were carried out using various amounts of mixing ratios. By determining the amount of CP utilized in the optimum ratios, it was aimed both to make predictions for design engineers and to show its beneficial effect on the environment by recycling the waste material. For this purpose, twelve specimens were produced and verified to monitor the flexural behavior. The longitudinal reinforcements percentage (0.77%, 1.21%, and 1.74%) and CP percentage (0%, 10%, 20%, and 30%) were chosen as the parameters. CP could be effectively used up to 10% of cement as a replacement material. Increasing the CP percentage by more than 10% could considerably reduce the load-carrying capacity, ductility, and stiffness of RCBs, specifically when the longitudinal reinforcements percentage was high. In other words, as CP increased from 0% to 30%, the load-carrying capacity decreased between 0.4% and 27.5% compared with RCBs with the longitudinal tension reinforcements of 2 phi 8 without CP. However, reductions of 5.5-39.8% and 2.15-39.5% in the load-carrying capacity occurred respectively compared with RCBs with the longitudinal tension reinforcements of 2 phi 10 and 2 phi 12 without CP. The achieved longitudinal reinforcements percentage was close to the balanced ratio, while more than 10% CP cannot be used without any precautions for mixtures.
  • Küçük Resim Yok
    Öğe
    Effects of Waste Powder, Fine and Coarse Marble Aggregates on Concrete Compressive Strength
    (Mdpi, 2022) Basaran, Bogachan; Kalkan, Ilker; Aksoylu, Ceyhun; Ozkilic, Yasin Onuralp; Sabri, Mohanad Muayad Sabri
    The use of marble wastes in concrete mixtures, causing air and water pollution, has been promoted in the academic and practical spheres of the construction industry. Although the effects of various forms (powder, fine, coarse and mixed) of this waste on the concrete compressive strength has been subject to a decent number of studies in the literature, the difficulties in reaching specific conclusions on the effect of each test parameter constitute a major restraint for the proliferation of the use of marble wastes in the concrete industry. Most of these studies are far from underscoring all of the parameters affecting the concrete compressive strength. Due to the urgent need in the literature for comprehensive studies on concrete mixtures with marble wastes, the results of the axial compression tests on a total of 429 concrete mixtures with marble aggregates were compiled by paying special attention to reporting all test variables (form and content of marble wastes, water-cement ratio, cement content, proportion of coarse and fine aggregates in all aggregates) affecting the concrete strength. In this context, multivariate regression analyses were carried out on the existing test results. These regression analyses yielded to relationships between the change in concrete compressive strength and the test parameters for each and every form of marble waste (powder, fine and coarse aggregate). The study indicated that independent from the form of marble wastes (as powder, fine aggregate or coarse aggregate), aggregate replacements of up to 50% can yield to significant changes in the concrete compressive strength. In addition, the analytical estimates from the developed equations exhibited a high correlation (a least r value of 0.91) with the experimental results from the previous studies, yielding to rather low error values (RMSE value is 5.06 MPa at max). For this reason, the developed equations can consistently predict the changes in concrete compressive strength with varying amounts and forms of the marble aggregates as well as the other test variables.
  • Küçük Resim Yok
    Öğe
    Experimental and numerical investigation of bending performance of prestressed purlins having different longitudinal web opening
    (Elsevier Science Inc, 2024) Aksoylu, Ceyhun; Ozkilic, Yasin Onuralp; Celedir, Emrullah; Basaran, Bogachan; Arslan, Musa Hakan
    Variable cross-section pre-stressed precast concrete purlin (PPCP) members are frequently used in industrial buildings. Lightening these elements, which create a significant weight on the roof plane, is extremely important to reduce both concrete consumption and the weight that will affect the earthquake force. The voids left in the purlin bodies can make them even more economical. A series of experimental and numeric studies were carried out to find an answer to this research question. In the study, 8 PPCP beams with different 1/1 geometric scale web opening ratios (ranging between 7.5%similar to 35% depending on the beam length) were tested. At the end of the experimental study, the openings created in the beams did not significantly reduce the load carrying capacity. In addition, bearing capacity of the reference beam was obtained approximately 17% greater than the calculated analytical value. The results of the tests were validated utilizing ABAQUS FEM. Then, a parametric study was performed on 48 models according to three different pre-stressing levels (0.3 P, 0.6 P and 0.9 P) and three different concrete strengths (30 MPa, 40 MPa and 50 MPa). According to results, especially in PPCP with web opening ratios of 27.5% and 32.5%, both initial stiffness and ductility values increased compared to the reference beam. From the numerical models, it was revelead that the decrease in concrete strength caused a capacity loss of up to 17%, especially in beams with the highest opening ratio. It was discovered that the increase in the pre-stress level increased the stiffness and capacity, but the least increase was in the beam with the highest opening ratio.
  • Küçük Resim Yok
    Öğe
    Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres
    (Elsevier, 2023) Yildizel, Sadik Alper; Ozkilic, Yasin Onuralp; Bahrami, Alireza; Aksoylu, Ceyhun; Basaran, Bogachan; Hakamy, Ahmad; Arslan, Musa Hakan
    In recent years, studies on the use of car tyre wastes in concrete have gained momentum. Especially, the effect of recycled waste steel wires (RWSWs) from tyres to be mixed into concrete for using in newly designed reinforced concrete buildings on the performance of construction elements is a fairly new research area. In this study, the bending behaviour of 12 reinforced concrete beams was investigated having 1/3 geometric scale, 100 x 150 x 1000 mm in size, and produced with RWSWs additive in different volumetric ratios (1%, 2%, and 3%) under vertical loads. Another main parameter selected in the study was the amount of varying tension reinforcements (24)12, 24)10, and 24)8). The load-carrying, stiffness, ductility, and energy dissipation capacities of the RWSW reinforced bending beams were compared with the primary aim of this study which was to examine and present the contribution of RWSWs on the improvement of the bending performance of the reinforced concrete beams. The results revealed that the mechanical properties of the hybrid beams with RWSWs vary depending on dosages but are comparable with those of the beams-only with the same fibre dosage. A positive effect was obtained for the hybrid beams containing 2-3% RWSWs. Besides, RWSWs were found to be highly well mobilised at larger crack widths, and the post-cracking strength of RWSW mixes was significantly higher. Considering both mechanical properties of the beams and fresh properties such as the workability, 2% of RWSWs is recommended to be utilised in the reinforced concrete beams. On the other hand, the results were compared with the predictions of the methods given in the literature and standards. Moreover, an equation was derived to better predict the capacity of the hybrid beams using RWSWs.
  • Küçük Resim Yok
    Öğe
    Mechanical behavior in terms of shear and bending performance of reinforced concrete beam using waste fire clay as replacement of aggregate
    (Elsevier, 2023) Ozkilic, Yasin Onuralp; Basaran, Bogachan; Aksoylu, Ceyhun; Karalar, Memduh; Martins, Carlos Humberto
    In this experimental and analytical study, waste fire clay (WFC) was consumed by the use of replacing fine aggregate (FA) in confident amounts. It is targeted to remove the current sustainable complications by confirming the consumption of WFC in reinforced concrete beams (RCBs) as raw materials. For this purpose, FAs were partially replaced with WFC in proportions of 0 %, 10 %, 20 %, and 30 %. Based on this motivation, a series of experimental studies were performed on 12 + 12 small-scale bending and shear RCBs of 100x150x1000mm, considering altered WFC and stirrup spacing. While the percentage of WFC in the RCBs was selected as 0 %, 10 %, 20 %, and 30 % by weight, correspondingly, the longitudinal reinforcement was taken into account as Phi 12, Phi 10, Phi 8. Besides, while the longitudinal tension and compression reinforcements of constant 2 Phi 12 and 2 Phi 6, the stirrup spacing was chosen as 160 mm, 200 mm, and 270 mm. As a result of the study, increasing the tensile reinforcement ratio has made the WFC less effective. Similarly, as stirrup spacing decreases, stirrup dominates the behavior, and as stirrup spacing increases, WFC determines the behavior. Finally, while the WFC content for bending RCBs increases the ability at the maximum level for the range of 20 % 30 %, it can be said that the optimum WFC content for shear RCBs is 20 %. The experimental results were obtained with the prediction of ACI-318 and the reason for the difference between the expected and actual values can be explained in detail.
  • Küçük Resim Yok
    Öğe
    Shear behaviour of reinforced concrete beams utilizing waste marble powder
    (Elsevier Science Inc, 2023) Basaran, Bogachan; Aksoylu, Ceyhun; Ozkilic, Yasin Onuralp; Karalar, Memduh; Hakamy, Ahmad
    Today, it has been determined that waste marble dust (WMD) is not evaluated and therefore creates environmental problems. For this reason, in this study, the usability of WMD in different proportions, in which waste materials are evaluated, was investigated. Thus, it is aimed to eliminate the existing environmental problems by ensuring the use of WMD in reinforced concrete beams (RCBs). Pursuant to this motivation, an experimental program was carried out on 15 shear deficient RCBs, considering different WMD and stirrup spacing. While the proportion of WMD in the RCBs was chosen as 10%, 20%, 30% and 40% by weight, respectively, the stirrup spacing was considered as 270 mm, 200 m, and 160 mm. Concrete compressive strength (CCS) is generally adversely affected while WMD is used instead of cement at 10% or more rates. In RCB samples with the stirrup spacing of 270 mm, 200 mm, and 160 mm, 10%, 20%, 30%, and 40% WMD additives reduced the bearing capacity of the RCBs compared to the reference sample. It has been observed that ACI 318 (2019) and EC2 (2004) design regulations demonstrate excellent performance (maximum 85% success) in estimating shear strength up to 20% marble dust admixture in RCBs where the stirrup spacing is 200 mm and 160 mm. The results revelaed that using up to 5% of WMD instead of cement has approximately no negative influence on the CCS. Nevertheless, if this percentage is chosen as 10% or more, it has been found that the CCS is commonly destructively affected.
  • Küçük Resim Yok
    Öğe
    Strengthening shear deficiency in undamaged reinforced concrete beams using innovative 45° mechanical steel stitches
    (Elsevier Science Inc, 2023) Aksoylu, Ceyhun; Uysal, Yusuf; Ozkilic, Yasin Onuralp; Basaran, Bogachan; Arslan, Musa Hakan
    In this study, beams with insufficient shear capacity were reinforced with U-shaped Mechanical Steel Stitches (MSS), which is an innovative approach. MSSs were applied at an angle of 45 degrees along the shear span on both faces of the beam body. A total of eight shear beam specimens, one of which is a reference and the other seven with different MSS spacing, were examined under vertical loads. The diameter, anchorage depth and mechanical properties of the MSSs and the geometry, longitudinal and transverse reinforcements of the reinforced concrete beam were kept constant. By changing the MSS intervals (from d/5 to d), the change was investigated in terms of strength, ductility, stiffness and energy consumption capacities. As a result of the study, 54% increase in shear capacity was observed in the beam with the most tightened MSS spacing (d/5). However, the nominal yield and total energy consumption capacity increased by 144% and 366%, respectively, compared to the reference beam. While splitting damage was most frequently observed in the MSS application with d/5, the damage turned into diagonal tension collapse, which is more abrupt and brittle as the spacing increases to d/2 range. As the MSS interval in beams increased from d/5 to d/2, the nominal yield stiffness of the beams showed a decreasing trend between 2.1% and 21.2% compared to the reference beam. Based on the experimental results, the developed novel strengthening methods can applicable to beams if the interval of MSS spacing is tightened enough.

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder