Yazar "Baydas, Mahmut" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods(De Gruyter Poland Sp Z O O, 2023) Wang, Zhiyuan; Baydas, Mahmut; Stevic, Zeljko; Ozcil, Abdullah; Irfan, Sayed Ameenuddin; Wu, Zhe; Rangaiah, Gade PanduThe use of multi-criteria decision-making (MCDM) methods to select the most appropriate one from a range of alternatives considering multiple criteria is a suitable methodology for making informed decisions. When constructing a decision or objective matrix (DOM) for MCDM procedure, either crisp numerical values or fuzzy linguistic terms can be used. A review of relevant literature indicates that decision experts often prefer to give linguistic terms (instead of crisp numerical values) based on their domain knowledge, to establish a fuzzy DOM. However, previous research articles have not adequately studied the selection between fuzzy and crisp DOM in MCDM, especially under the context of assessing the financial performance (FP) of listed firms - a notably complex decision-making problem. As such, the primary motivation of this study is to bridge this research gap through comparative analyses of fuzzy and crisp DOM in MCDM. Along this path, and in order to handle fuzzy DOM, this work also proposes two new fuzzy MCDM methods: fuzzy preference ranking on the basis of ideal-average distance (PROBID) and fuzzy sPROBID (simpler PROBID), extending the applicability of the original crisp PROBID and sPROBID methods. Moreover, for the first time in the literature, this work compares the FP rankings obtained using fuzzy MCDM methods with an objective benchmark we have identified, i.e., the real-life stock return (SR)-based ranking. The case study of ranking the FP of 32 listed firms demonstrates that the fuzzy MCDM methods produce higher correlation results with the SR-based ranking. The results also suggest that the proposed fuzzy sPROBID method with triangular fuzzy DOM performs the best for assessing the FP of firms in terms of Spearman's rank correlation coefficient with the SR-based ranking. Overall, the contributions of this work are three-fold: first, it proposes two new fuzzy MCDM methods (i.e., fuzzy PROBID and fuzzy sPROBID); second, it advances the application of fuzzy MCDM methods in assessing and ranking the FP of listed firms to make rational investment decisions in the financial market; third, it studies the selection between fuzzy and crisp DOM through comparisons with an objective benchmark.Öğe Comparison of fuzzy and crisp decision matrices: An evaluation on PROBID and sPROBID multi-criteria decision-making methods(De Gruyter Poland Sp Z O O, 2023) Wang, Zhiyuan; Baydas, Mahmut; Stevic, Zeljko; Ozcil, Abdullah; Irfan, Sayed Ameenuddin; Wu, Zhe; Rangaiah, Gade PanduThe use of multi-criteria decision-making (MCDM) methods to select the most appropriate one from a range of alternatives considering multiple criteria is a suitable methodology for making informed decisions. When constructing a decision or objective matrix (DOM) for MCDM procedure, either crisp numerical values or fuzzy linguistic terms can be used. A review of relevant literature indicates that decision experts often prefer to give linguistic terms (instead of crisp numerical values) based on their domain knowledge, to establish a fuzzy DOM. However, previous research articles have not adequately studied the selection between fuzzy and crisp DOM in MCDM, especially under the context of assessing the financial performance (FP) of listed firms - a notably complex decision-making problem. As such, the primary motivation of this study is to bridge this research gap through comparative analyses of fuzzy and crisp DOM in MCDM. Along this path, and in order to handle fuzzy DOM, this work also proposes two new fuzzy MCDM methods: fuzzy preference ranking on the basis of ideal-average distance (PROBID) and fuzzy sPROBID (simpler PROBID), extending the applicability of the original crisp PROBID and sPROBID methods. Moreover, for the first time in the literature, this work compares the FP rankings obtained using fuzzy MCDM methods with an objective benchmark we have identified, i.e., the real-life stock return (SR)-based ranking. The case study of ranking the FP of 32 listed firms demonstrates that the fuzzy MCDM methods produce higher correlation results with the SR-based ranking. The results also suggest that the proposed fuzzy sPROBID method with triangular fuzzy DOM performs the best for assessing the FP of firms in terms of Spearman's rank correlation coefficient with the SR-based ranking. Overall, the contributions of this work are three-fold: first, it proposes two new fuzzy MCDM methods (i.e., fuzzy PROBID and fuzzy sPROBID); second, it advances the application of fuzzy MCDM methods in assessing and ranking the FP of listed firms to make rational investment decisions in the financial market; third, it studies the selection between fuzzy and crisp DOM through comparisons with an objective benchmark.Öğe Determining Objective Characteristics of MCDM Methods under Uncertainty: An Exploration Study with Financial Data(Mdpi, 2022) Baydas, Mahmut; Pamucar, DraganA major difficulty in comparing and even choosing MCDM methods is the uncertainty of information about the consistent and unique characteristics of the results produced. The objective information content of the final scores produced by MCDM methods and their relevance to real life can give us an important idea about them. In this study, first of all, seven MCDM methods with different methodologies were applied to evaluate companies' financial performance. Then, the obtained MCDM scores were compared using two different objective verification mechanisms. The first validation criterion is the relationship of a MCDM method to real-life rankings (share price). The second criterion is the standard deviation (SD) technique used to discover the objective information content of MCDM final scores. According to the results of this study, PROMETHEE and FUCA definitely outperform other methods in terms of both SD values and strength of correlation with reference real-life rankings. Also, FUCA is methodologically simpler than other methods. However, it produced nearly identical results as the sophisticated PROMETHEE method.Öğe Exploring the specific capacity of different multi criteria decision making approaches under uncertainty using data from financial markets(Pergamon-Elsevier Science Ltd, 2022) Baydas, Mahmut; Elma, Orhan Emre; Pamucar, DraganEven if the MCDM methods produce statistically significant and similar rankings in a given problem, they can present the best alternatives in a different order. Random selection of the best alternative can create a complexity for the decision maker in reaching the most suitable outcome in a scenario. It is extremely challenging to oversee what the capacity or capability strengths of the more than 100 MCDM methods are, based on the results they produce. This issue is still regarded as a paradox, as there is no approved criterion to compare MCDM methods under uncertainty, in the literature. This study is aimed to determine the capacity of MCDM methods by outputs rather than inputs, unlike the previous literature. Discussions in the recent literature points out that the capacity of a MCDM method that better fits real life problems can be higher. In this respect, share returns were regarded as a reference in comparing MCDM methods objectively by financial performance of companies in this study. A multi-criteria approach that consistently produced significantly higher correlations with share returns compared to other methods has been accepted as the most appropriate MCDM method in the framework of this research. The study was conducted on 23 companies in the BIST30 index, which lists the largest companies in Borsa Istanbul. 10 MCDM methods were compared according to their significance in producing a higher relationship with share returns. As a result, PROMETHEE and FUCA methods clearly shared the first place as the most efficient compared to other methods, which are TOPSIS, GRA, S-, WSA, SAW, COPRAS, MOORA and LINMAP.Öğe Proposal for an objective binary benchmarking framework that validates each other for comparing MCDM methods through data analytics(Peerj Inc, 2023) Baydas, Mahmut; Eren, Tevfik; Stevic, Zeljko; Starcevic, Vitomir; Parlakkaya, RaifWhen it comes to choosing the best option among multiple alternatives with criteria of different importance, it makes sense to use multi criteria decision making (MCDM) methods with more than 200 variations. However, because the algorithms of MCDM methods are different, they do not always produce the same best option or the same hierarchical ranking. At this point, it is important how and according to which MCDM methods will be compared, and the lack of an objective evaluation framework still continues. The mathematical robustness of the computational procedures, which are the inputs of MCDM methods, is of course important. But their output dimensions, such as their capacity to generate well-established real-life relationships and rank reversal (RR) performance, must also be taken into account. In this study, we propose for the first time two criteria that confirm each other. For this purpose, the financial performance (FP) of 140 listed manufacturing companies was calculated using nine different MCDM methods integrated with step-wise weight assessment ratio analysis (SWARA). In the next stage, the statistical relationship between the MCDM-based FP final results and the simultaneous stock returns of the same companies in the stock market was compared. Finally, for the first time, the RR performance of MCDM methods was revealed with a statistical procedure proposed in this study. According to the findings obtained entirely through data analytics, Faire Un Choix Adequat (FUCA) and (which is a fairly new method) the compromise ranking of alternatives from distance to ideal solution (CRADIS) were determined as the most appropriate methods by the joint agreement of both criteria.Öğe Proposal of an innovative MCDA evaluation methodology: knowledge discovery through rank reversal, standard deviation, and relationship with stock return(Springer, 2024) Baydas, Mahmut; Elma, Orhan Emre; Stevic, ZeljkoFinancial performance analysis is of vital importance those involved in a business (e.g., shareholders, creditors, partners, and company managers). An accurate and appropriate performance measurement is critical for decision-makers to achieve efficient results. Integrated performance measurement, by its nature, consists of multiple criteria with different levels of importance. Multiple Criteria Decision Analysis (MCDA) methods have become increasingly popular for solving complex problems, especially over the last two decades. There are different evaluation methodologies in the literature for selecting the most appropriate one among over 200 MCDA methods. This study comprehensively analyzed 41 companies traded on the Borsa Istanbul Corporate Governance Index for 10 quarters using SWARA, CRITIC, and SD integrated with eight different MCDA method algorithms to determine the position of Turkey's most transparent companies in terms of financial performance. In this study, we propose stock returns as a benchmark in comparing and evaluating MCDA methods. Moreover, we calculate the rank reversal performance of MCDA methods. Finally, we performed a standard deviation analysis to identify the objective and characteristic trends for each method. Interestingly, all these innovative comparison procedures suggest that PROMETHEE II (preference ranking organization method for enrichment of evaluations II) and FUCA (Faire Un Choix Adequat) are the most suitable MCDA methods. In other words, these methods produce a higher correlation with share price; they have fewer rank reversal problems, the distribution of scores they produce is wider, and the amount of information is higher. Thus, it can be said that these advantages make them preferable. The results show that this innovative methodological procedure based on 'knowledge discovery' is verifiable, robust and efficient when choosing the MCDA method.Öğe Proposal of an innovative MCDA evaluation methodology: knowledge discovery through rank reversal, standard deviation, and relationship with stock return(Springer, 2024) Baydas, Mahmut; Elma, Orhan Emre; Stevic, ZeljkoFinancial performance analysis is of vital importance those involved in a business (e.g., shareholders, creditors, partners, and company managers). An accurate and appropriate performance measurement is critical for decision-makers to achieve efficient results. Integrated performance measurement, by its nature, consists of multiple criteria with different levels of importance. Multiple Criteria Decision Analysis (MCDA) methods have become increasingly popular for solving complex problems, especially over the last two decades. There are different evaluation methodologies in the literature for selecting the most appropriate one among over 200 MCDA methods. This study comprehensively analyzed 41 companies traded on the Borsa Istanbul Corporate Governance Index for 10 quarters using SWARA, CRITIC, and SD integrated with eight different MCDA method algorithms to determine the position of Turkey's most transparent companies in terms of financial performance. In this study, we propose stock returns as a benchmark in comparing and evaluating MCDA methods. Moreover, we calculate the rank reversal performance of MCDA methods. Finally, we performed a standard deviation analysis to identify the objective and characteristic trends for each method. Interestingly, all these innovative comparison procedures suggest that PROMETHEE II (preference ranking organization method for enrichment of evaluations II) and FUCA (Faire Un Choix Adequat) are the most suitable MCDA methods. In other words, these methods produce a higher correlation with share price; they have fewer rank reversal problems, the distribution of scores they produce is wider, and the amount of information is higher. Thus, it can be said that these advantages make them preferable. The results show that this innovative methodological procedure based on 'knowledge discovery' is verifiable, robust and efficient when choosing the MCDA method.