Yazar "Cevik, A. Sinan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe On the first Zagreb index and multiplicative Zagreb coindices of graphs(Ovidius Univ Press, 2016) Das, Kinkar Ch; Akgunes, Nihat; Togan, Muge; Yurttas, Aysun; Cangul, I. Naci; Cevik, A. SinanFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M-1(G) = Sigma v(i is an element of V(G))d(C)(v(i))(2), where d(G) (v(i)) is the degree of vertex v(i), in G. Recently Xu et al. introduced two graphical invariants (Pi) over bar (1) (G) = Pi v(i)v(j is an element of E(G)) (dG (v(i))+dG (v(j))) and (Pi) over bar (2)(G) = Pi(vivj is an element of E(G)) (dG (v(i))+dG (v(j))) named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = Pi(n)(i=1) d(G) (v(i)). The irregularity index t(G) of G is defined as the num=1 ber of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M-1(G) of graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and NarumiKatayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.Öğe On the first Zagreb index and multiplicative Zagreb coindices of graphs(Ovidius Univ Press, 2016) Das, Kinkar Ch; Akgunes, Nihat; Togan, Muge; Yurttas, Aysun; Cangul, I. Naci; Cevik, A. SinanFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M-1(G) = Sigma v(i is an element of V(G))d(C)(v(i))(2), where d(G) (v(i)) is the degree of vertex v(i), in G. Recently Xu et al. introduced two graphical invariants (Pi) over bar (1) (G) = Pi v(i)v(j is an element of E(G)) (dG (v(i))+dG (v(j))) and (Pi) over bar (2)(G) = Pi(vivj is an element of E(G)) (dG (v(i))+dG (v(j))) named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = Pi(n)(i=1) d(G) (v(i)). The irregularity index t(G) of G is defined as the num=1 ber of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M-1(G) of graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and NarumiKatayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.Öğe Some properties on the tensor product of graphs obtained by monogenic semigroups(Elsevier Science Inc, 2014) Akgunes, Nihat; Das, Kinkar Ch.; Cevik, A. SinanIn Das et al. (2013) [8], a new graph 1'(S-M) on monogenic semigroups S-M (with zero) having elements {0, x, x(2), x(3),..., x(n)} has been recently defined. The vertices are the non-zero elements x; x(2); x(3);..., x(n) and, for 1 <= i,j <= n, any two distinct vertices x(i) and x(j) are adjacent if x(i)x(j) = 0 in S-M. As a continuing study, in Akgunes et al. (2014) [3], it has been investigated some well known indices (first Zagreb index, second Zagreb index, Randic index, geometric-arithmetic index, atom-bond connectivity index, Wiener index, Harary index, first and second Zagreb eccentricity indices, eccentric connectivity index, the degree distance) over Gamma(S-M). In the light of above references, our main aim in this paper is to extend these studies over Gamma(S-M) to the tensor product. In detail, we will investigate the diameter, radius, girth, maximum and minimum degree, chromatic number, clique number and domination number for the tensor product of any two (not necessarily different) graphs Gamma(S-M)(1) and Gamma(S-M(2)). (C) 2014 Published by Elsevier Inc.