Yazar "Ciniviz, Murat" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The Effect on Performance and Exhaust Emissions of Adding Cotton Oil Methyl Ester to Diesel Fuel(2016) Kahraman, Ali; Ciniviz, Murat; Örs, İlker; Oğuz, HidayetIn the study, engine performance and exhaust emissions of diesel fuel and cotton oil methyl ester (COME) blends at proportions of 2%, %5 and 10% (v/v) have been investigated. The engine was fuelled with COME-diesel blends and pure diesel when running the engine at six different engine speed (1000, 1200, 1400, 1600, 1800, 2000 rpm) and at full load. Test results are presented engine torque and specific fuel consumption (SCF) as engine performance, and Carbon monoxide (CO), Hydrocarbon (HC), smoke and nitrogen oxides (NOx) as exhaust emissions. As result, this study is show that although engine performance decreased with COME adding to diesel fuel, exhaust emissions was generally improved.Öğe Effects on Performance, Emission and Combustion Parameters of Addition Biodiesel and Bioethanol into Diesel Fuel(2017) Örs, İlker; Kahraman, Ali; Ciniviz, MuratIn this study, safflower based biodiesel produced in the pilot plant were blended with certainamounts of diesel fuel and bioethanol from sugar beet. Diesel fuel and the blends were testedin a direct injection diesel engine and engine performance, combustion and exhaust emissioncharacteristics were investigated. According to test results, the brake specific fuel consumptionsof biodiesel blend were about 8.51% higher than diesel fuel. Bioethanol is increased brakespecific fuel consumptions values up to 26.77%. The maximum cylinder gas pressure ofbiodiesel blend was about 0.46% higher than that of diesel fuel on average. This value wasdecreased about 1.75% with using of bioethanol. The exhaust emission results showed thatbiodiesel blend decreased carbon dioxide emissions and smoke opacity, while it increasednitrogen oxide emissions and exhaust gas temperature. Nitrogen oxide emissions, smokeopacity and exhaust gas temperature values were decreased with adding bioethanol, while itincreased carbon dioxide emissions.Öğe The experimental investigation of diesel fuel-biofuel blends at different injection pressures in a DI diesel engine(Academic Publication Council, 2021) Ors, Ilker; Ciniviz, Murat; Kul, Bahar Sayin; Kahraman, AliIn this study, it was aimed to investigate the effects of a diesel-biodiesel blend (B20) and a diesel-biodieselbioethanol blend (BE5) on combustion parameters in addition to engine performance and exhaust emissions compared with diesel fuel. Parameters included in the evaluation was brake specific fuel consumption, brake thermal efficiency, CO, CO2, HC, NOx, smoke opacity emissions and finally cylinder pressure, heat release rate, ignition delay, some key points of the combustion phases such as start of ignition, start of combustion, CA50 and CA90 and combustion duration. Engine tests were conducted at different injection pressures of 170 bar, 190 bar, which is the original injection pressure, and 220 bar by the engine being loaded by 25, 50, 75 and 100% for the assessment of engine performance and exhaust emissions. For combustion evaluation, the data obtained at 1400 rpm, maximum torque -speed, and 2800 rpm, maximum power-speed were used, while the injection pressures were set to 170, 190 and 220 bar under full load condition. According to test results, the better performance characteristics, exhaust emissions and combustion behaviour of engine were obtained with the use of BE5 at high injection pressure. So, BE5 fuel improved brake specific fuel consumption by about 7% and brake theunal efficiency by about 6% compared to B20. In addition, while the emission values of BE5 gave better results than diesel fuel, it reduced the NOx and smoke emissions of B20 by approximately 1.4% and 6.4% respectively. Moreover, it has achieved a reduction in smoke emission of up to 45% compared to diesel fuel.