Yazar "Gavgali, Mehmet" seçeneğine göre listele
Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Al-5Cu/B4Cp composites: The combined effect of artificially aging (T6) and particle volume fractions on the corrosion behaviour(Elsevier, 2020) Tozkoparan, Burak; Dikici, Burak; Topuz, Mehmet; Bedir, Fevzi; Gavgali, MehmetIn this study, the Al-5Cu matrix composites reinforced with different boron carbide (B4C) particle volume fractions have been successfully produced by the hot-pressing method. Then, the artificially aging (T6) was applied to the composites for increasing their mechanical properties. The combined effect of the T6 heat treating and the B4C particle volume fraction on the corrosion behaviour of the composites were investigated by potentiodynamic scanning (PDS) technique under aerated and deaerated 3.5% NaCl marine environments. The effect of the T6 treating on the hardness and corrosion susceptibilities of the composites were also evaluated microstructurally to contribute to their industrial use and production processes. The microstructural characterization of the composites was carried out by using a scanning electron microscope (SEM) with an attached energy dispersive spectrum (EDS) and X-ray diffraction (XRD). It was found that the corrosion susceptibilities of the composite have been interestingly decreased with increasing the B4C particle volume fraction in the matrix while the T6 treatment enhances the pitting susceptibility of the composites. The reason of the behaviour has been discussed in details the text. (C) 2020 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.Öğe Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study(Elsevier, 2021) Uslu, Emin; Gavgali, Mehmet; Erdal, Mehmet Okan; Yazman, Sakir; Gemi, LokmanFiber-reinforced polymer matrix composites are widely used in many structural applications thanks to their exceptional properties. In recent years, the use of electrospinning nanofibers with unique properties as reinforcement agents has attracted a great deal of attention in improving the performance of these composites. Although there are many promising studies on this subject in the literature, there are still many issues that need to be investigated. In this study, an experimental research reporting on the production and mechanical properties of two-phase polymer matrix composites reinforced with various types of thermoplastic nanofibers is presented. Nanofiber mats were produced from N66, PAN, PVA, and PVC polymers by electrospinning technique. Composites were obtained by embedding these nanofibers into epoxy resin by using vacuum infusion process. Mechanical properties of the composites were determined by performing tensile tests and the results were compared. The morphologies of nanofibers and the fracture surfaces of the composites were examined with SEM. Finally, statistical evaluations were carried out using mechanical data. According to tensile test results, the best ultimate tensile strength of 38.04 +/- 3.7 MPa, elongation of 2.46 +/- 0.4 % and toughness of 532 +/- 137 kJ/m(3) were obtained from N66 nanofiber composite, while PVA nanofiber composite was the most favorable in terms of Young's modulus (2.40 GPa). It was observed that the polymer type significantly affected the performance of the composite. In addition to the best mechanical properties, N66 composite was found to be more stable and reproducible than other specimens. Due to the good impregnation of nanofibers, it was conclusively determined that the use of vacuum infusion process is suitable for the production of these materials.Öğe The effect of high TiC particle content on the tensile cracking and corrosion behavior of Al-5Cu matrix composites(Sage Publications Ltd, 2020) Dikici, Burak; Bedir, Fevzi; Gavgali, MehmetThe high-TiC particle volume fraction on the mechanical properties and corrosion behavior of the A-5Cu matrix composites were investigated with porosity, hardness, tensile tests, and polarization measurements. The composites reinforced with 18, 27, and 50 vol% TiC particulates were produced successfully by using hot-pressing technique under Ar atmosphere and characterized by scanning electron microscope, electron dispersive spectroscope, and X-ray diffraction. The corrosion susceptibilities of the composites were compared with potentiodynamic scanning technique. It was found that the hardness of the composites increases while the fracture strength decreases with increasing TiC reinforcement content in the matrix. The corrosion susceptibilities of 18 and 27 vol% TiC-reinforced composites are almost the same; the corrosion rate of 50 vol% TiC-reinforced composite was approximately 10 times higher than the composites reinforced with 18 and 27 vol% TiC particles in the 3.5% NaCl. In addition, some preferential corrosion attacks were detected at TiC/matrix interfaces and in TiC clusters during the corrosion process of the composites. Therefore, the porosity content in the composites was almost the same level.Öğe Effect of hydroxyapatite:zirconia volume fraction ratio on mechanical and corrosive properties of Ti-matrix composite scaffolds(Elsevier, 2022) Topuz, Mehmet; Dikici, Burak; Gavgali, Mehmet; Yilmazer, YaseminTi-based scaffolds reinforced with zirconia and hydroxyapatite were produced successfully by a hybrid method with an eco-friendliness and low cost to obtain low elastic modulus (E) with sufficient physical, electrochemical and biological properties. The effect of simultaneous modification of the volume fraction of hydroxyapatite (HA) and zirconia (ZrO2) on scaffolds was investigated in terms of mechanical, corrosive, and antibacterial properties. Scanning electron microscopy with attached electron dispersive spectroscopy and X-ray diffraction were used for the characterization of scaffolds. Compression and electrochemical tests were performed to determine mechanical properties with detailed fracture mechanism and in-vitro corrosion susceptibility to simulated body fluid at 37 degrees C, respectively. Antibacterial tests were carried out by comparing the inhibition areas of E.coli and S.aureus bacteria. It was observed that the mechanical strength of the scaffolds decreased with increasing HA:ZrO2 volume fraction ratio. The lowest E was achieved (6.61 GPa) in 6:4 HA:ZrO2 composite scaffolds. Corrosion current density (J(corr)) values were calculated to be 21, 337, and 504 mu A/cm(2) for unreinforced Ti, 3:2 and 6:4 HA:ZrO2 reinforced scaffolds, respectively. The inhibition capacity of the 6:4 reinforced composite scaffold was found to be more effective against S.aureus bacteria than other scaffolds.Öğe Processing of Ti/(HA+ZrO2) biocomposite and 50% porous hybrid scaffolds with low Young's modulus by powder metallurgy: Comparing of structural, mechanical, and corrosion properties(Elsevier, 2021) Topuz, Mehmet; Dikici, Burak; Gavgali, Mehmet; Kaseem, MosabProcessing of titanium (Ti)-based implants with improved corrosion resistance and Young's modulus close to that of cortical bone are receiving considerable attention in orthopedic and dental applications. Therefore, Ti matrix, hydroxyapatite (HA) and hydroxyapatite-zirconia (HA+ZrO2) reinforced composites were successfully produced using powder metallurgy as both bulk and 50% in vol. porous scaffold in this study. Microstructure, mechanical and corrosion properties of the bulk and scaffold composites were investigated comparatively. Scanning electron microscopy with attached an energy dispersive spectroscopy (SEM-EDS) and XRD diffraction analysis was used for the characterization of samples. Mechanical properties were determined by using micro Vickers hardness and compressive tests. Besides, the corrosion behaviours of the samples were determined in simulated body fluid (SBF) at 37 degrees C by using potentiodynamic scanning (PDS) tests. Room-temperature compression tests revealed that the bulk samples had higher values of Young's modulus and yield strength in comparison to the scaffold samples where the lowest values of Young's modulus and yield strength of 3 GPa and 6.93 MPa, respectively were obtained in the case of the Ti/(HA+ZrO2) composite scaffold. Moreover, in-vitro corrosion tests in SBF showed that the Ti/(HA+ZrO2) composite scaffold had higher corrosion resistance than the scaffold reinforced with only the HA phase. The corrosion mechanism of the bulk and scaffold samples was also elucidated by taking the microstructural analysis and phase compositional of the samples into account.Öğe Titanium-based composite scaffolds reinforced with hydroxyapatite-zirconia: Production, mechanical and in-vitro characterization(Elsevier, 2021) Topuz, Mehmet; Dikici, Burak; Gavgali, MehmetIn this study, titanium (Ti)-based composite scaffolds reinforced with hydroxyapatite-zirconia (HA-ZrO2) were successfully produced with powder metallurgy and atmosphere-controlled sintering processes. The scaffolds structures were theoretically selected as 40% and 60% porosity, and fabricated with approximately 1.47 and 4.02 std dev values, respectively. The porosity of the scaffolds was verified by Archimedes? measurements. The scaffolds were characterized by DTA, SEM/EDS, XRD analyses. The mechanical behaviors of the scaffolds were evaluated by compression and hardness tests. Besides, the electrochemical corrosion behaviors of the structures were compared with potentiodynamic scanning (PDS) measurements in simulated body fluids (SBF) at 37 ? 1 ?C. It has been observed that all scaffolds have a bimodal porous structure as they contain varying proportions of micropores as well as macropores in desired dimensions. Biocompatible phases such as TixPy, Ca3(PO4)2 and CaTiO3, respectively, were found in the microstructure after sintering. In compression tests, 40% porous Ti had the highest strength with 37.98 MPa, interestingly, the lowest strength was seen in Ti/HA-ZrO2 scaffold with 60% porosity with 3.80 MPa. Young?s modulus values of all scaffolds vary between 1.67 - 7.20 GPa, due to the bimodal pore structure and composition effect. However, in-vitro corrosion resistance of scaffolds decreased with HA reinforcement, while increased with ZrO2 additive to HA.