Yazar "Inan, Onur" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An application of the whale optimization algorithm with Levy flight strategy for clustering of medical datasets(Ramazan Yaman, 2021) Mat, Ayse Nagehan; Inan, Onur; Karakoyun, MuratClustering, which is handled by many researchers, is separating data into clusters without supervision. In clustering, the data are grouped using similarities or differences between them. Many traditional and heuristic algorithms are used in clustering problems and new techniques continue to be developed today. In this study, a new and effective clustering algorithm was developed by using the Whale Optimization Algorithm (WOA) and Levy flight (LF) strategy that imitates the hunting behavior of whales. With the developed WOA-LF algorithm, clustering was performed using ten medical datasets taken from the UCI Machine Learning Repository database. The clustering performance of the WOA-LF was compared with the performance of k-means, k-medoids, fuzzy c-means and the original WOA clustering algorithms. Application results showed that WOA-LF has more successful clustering performance in general and can be used as an alternative algorithm in clustering problems.Öğe Failure Prediction of Aircraft Equipment Using Machine Learning with a Hybrid Data Preparation Method(Hindawi Ltd, 2020) Celikmih, Kadir; Inan, Onur; Uguz, HarunThere is a large amount of information and maintenance data in the aviation industry that could be used to obtain meaningful results in forecasting future actions. This study aims to introduce machine learning models based on feature selection and data elimination to predict failures of aircraft systems. Maintenance and failure data for aircraft equipment across a period of two years were collected, and nine input and one output variables were meticulously identified. A hybrid data preparation model is proposed to improve the success of failure count prediction in two stages. In the first stage, ReliefF, a feature selection method for attribute evaluation, is used to find the most effective and ineffective parameters. In the second stage, aK-means algorithm is modified to eliminate noisy or inconsistent data. Performance of the hybrid data preparation model on the maintenance dataset of the equipment is evaluated by Multilayer Perceptron (MLP) as Artificial Neural network (ANN), Support Vector Regression (SVR), and Linear Regression (LR) as machine learning algorithms. Moreover, performance criteria such as the Correlation Coefficient (CC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) are used to evaluate the models. The results indicate that the hybrid data preparation model is successful in predicting the failure count of the equipment.Öğe A Method of Classification Performance Improvement Via a Strategy of Clustering-Based Data Elimination Integrated withk-Fold Cross-Validation(Springer Heidelberg, 2021) Inan, Onur; Uzer, Mustafa SerterNon-system errors that occur during data entry or data collection create noisy data that reduce the success of classification systems. To eliminate this data, a classification system with a new data reduction method consisting of a modifiedk-means algorithm using relief algorithm coefficients named MKMA-RAC was developed. The main theme of this article is the elimination of noisy data and its consistent application to the classification system using thek-fold cross-validation method. By means of the developed system, the training data became free from noisy data by integrating the support vector machine, linear discriminant analysis (LDA) and decision tree classifiers with MKMA-RAC-based data reduction for every fold. The data reduction process was not applied for the test data. Datasets used in the proposed method were the Hepatitis, Liver Disorders, SPECT images and Statlog (Heart) dataset taken from the UCI database. Classification performance values obtained both from the proposed method and without the proposed method with tenfold CV were given for these datasets. For Hepatitis, Liver Disorders, SPECT images and Statlog (Heart) datasets, and classification successes of the proposed system with SVM classifier were 96.88%, 74.56%, 87.24%, and 90.00%, classification successes of the proposed system with LDA classifier were 94.91%, 69.05%, 82.38%, and 88.52%, classification successes of the proposed system with decision tree classifier were 96.25%, 77.73%, 88.77% and 89.63%, respectively. The test results have shown that the proposed system generally achieved higher classification performance than other literature results. Therefore, the performance is very encouraging for pattern recognition applications.