Yazar "Kalsen, Tugba Selcen Atalay" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Chemical Composition Simplification of the Seydisehir (Konya, Turkey) Alumina Plant Waste(Springer, 2019) Kalsen, Tugba Selcen Atalay; Karadag, Hakan Burak; Eker, Yasin Ramazan; Kerti, IsilRed mud, a residue of alumina production from bauxite refining, contains oxides of valuable metals such as Fe, Al, Ti, Si, Na, Ca, etc. The presence of these numerous metal oxides does not allow introducing the highly basic raw red mud within any industrial process, which leads to its storage over a wide land area. In order to simplify the chemical composition of this waste, the effects of weak acid leaching (citric acid) and strong acid leaching (hydrochloric acid) are studied. The treatment efficiency is discussed based on scanning electron microscope and X-ray diffraction analysis of solid product and inductively coupled plasma spectrometry analysis of acidic solutions. The effects of temperature and acid concentration on metals dissolution are estimated by rough kinetic considerations which present results comparable to those in the literature. More than 50% of Al and 50% of Ca detected by inductively coupled plasma mass spectrometry were separated via the organic acid process, while during leaching with HCl whole Ca, Fe, and more than 60% Ti and 80% of Al similarly determined were recovered. This confirms that within the red mud, metals behave differently under several forms with different reactivity toward acidic medium. Therefore, an eventual combination of both acids can be an efficient way to prepare them ready and suitable for possible industrial applications.Öğe The Out-Of-Plane Compression Behavior of In Situ Ethylene Vinyl Acetate (EVA)-Foam-Filled Aluminum Honeycomb Sandwich Structures(Mdpi, 2023) Kalsen, Tugba Selcen Atalay; Karadag, Hakan Burak; Eker, Yasin RamazanIn this study, the mechanical behavior of aluminum honeycomb (AHC) sandwich structures filled with ethylene vinyl acetate copolymer (EVA) foam in situ under out-of-plane compression loading was investigated experimentally. Both non-filled and EVA-foam-filled sandwich specimens with three different AHC core cell sizes (5.20, 6.78, and 8.66 mm) were studied to correlate the foam-filling effect with a key structural parameter. The results showed that compression characteristic properties such as peak stress, plateau stress, and absorbed energy per unit volume of the sandwich structure increased with EVA foam filling. The structure showed high recoverability when the compression loading was removed due to the viscoelastic nature of EVA foam. Cored EVA sandwich with 8.66 mm AHC cell size was recovered at 44% of the original thickness. This result promises groundbreaking applications such as impact-resistant and self-healing structures. The microstructures were also observed using scanning electron microscopy (SEM) to investigate the failure and the recoverability mechanisms.