Yazar "Kiran, Mustafa Servet" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An improved artificial bee colony algorithm for balancing local and global search behaviors in continuous optimization(Springer Heidelberg, 2020) Hakli, Huseyin; Kiran, Mustafa ServetThe artificial bee colony, ABC for short, algorithm is population-based iterative optimization algorithm proposed for solving the optimization problems with continuously-structured solution space. Although ABC has been equipped with powerful global search capability, this capability can cause poor intensification on found solutions and slow convergence problem. The occurrence of these issues is originated from the search equations proposed for employed and onlooker bees, which only updates one decision variable at each trial. In order to address these drawbacks of the basic ABC algorithm, we introduce six search equations for the algorithm and three of them are used by employed bees and the rest of equations are used by onlooker bees. Moreover, each onlooker agent can modify three dimensions or decision variables of a food source at each attempt, which represents a possible solution for the optimization problems. The proposed variant of ABC algorithm is applied to solve basic, CEC2005, CEC2014 and CEC2015 benchmark functions. The obtained results are compared with results of the state-of-art variants of the basic ABC algorithm, artificial algae algorithm, particle swarm optimization algorithm and its variants, gravitation search algorithm and its variants and etc. Comparisons are conducted for measurement of the solution quality, robustness and convergence characteristics of the algorithms. The obtained results and comparisons show the experimentally validation of the proposed ABC variant and success in solving the continuous optimization problems dealt with the study.Öğe A tree-seed algorithm based on intelligent search mechanisms for continuous optimization(Elsevier, 2021) Kiran, Mustafa Servet; Hakli, HuseyinOne of the recently proposed metaheuristic algorithms is tree-seed algorithm, TSA for short. TSA is developed by inspiring the relation between trees and their seeds in order to solve continuous optimization problems, and it has a simple but effective algorithmic structure. The algorithm uses two different solution generating mechanisms in order to improve balance local and global search abilities. However, when the algorithm is analyzed in detail, it is seen that there are some issues in the basic algorithm. These are (i) when trees in the stand approaches to each other, the diversification in the stand is lost, (ii) there is no mechanism to get rid of local minima for a tree, (iii) some of the fitness calculation goes to waste due to seed generation mechanism of basic TSA. In order to address these issues, four different approaches (withering process, sequential seed generation, best-based solution update rule and dimensional selection for the solution update rule) have been proposed for the basic TSA, and all these approaches have been also integrated within algorithmic framework of TSA, named new tree-seed algorithm briefly NTSA, and each of them has been used to solve 28 CEC2013 benchmark functions. In the experimental comparisons, the variants of TSA have been compared with each other, and the better algorithm, NTSA, has been compared with 17 state-of-art algorithms such as artificial bee colony, particle swarm optimization, differential evolution, genetic algorithm, covariance matrix adaptation evolutionary strategy etc. The experimental analysis and comparisons show that the NTSA shows better or similar performance than/with the compared algorithms in terms of solution quality and robustness. (C) 2020 Elsevier B.V. All rights reserved.