Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Korkmaz, Merve" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Almost unbiased Liu-type estimators in gamma regression model
    (Elsevier, 2022) Asar, Yasin; Korkmaz, Merve
    The Liu-type estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effect of multicollinearity problem. It is known that multicollinear-ity affects the variance of the maximum likelihood estimator negatively in gamma regression model. Therefore, an almost unbiased Liu-type estimator together with a modified version of it is proposed to overcome the multicollinearity problem. The performance of the new estimators is investigated both theoretically and numerically via a Monte Carlo simulation experiment and a real data illustration. Based on the results, it is observed that the proposed estimators can bring significant improvement relative to other competitor estimators. (c) 2021 Elsevier B.V. All rights reserved.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Gamma Regresyon Modelinde Bazı Tahmin Edicilerin Karşılattırılması
    (Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, 2022) Korkmaz, Merve; Asar, Yasin
    Dogrusal modellere benzer olarak genelle¸stirilmi¸s do ˘ grusal modellerin bir üyesi olan gamma ˘ regresyon modelinde de çoklu baglantı problemi oldu ˘ gunda en çok olabilirlik tahmin edicisinin per- ˘ formansı bu durumdan kötü etkilenmektedir. Bu çalı¸smada, gamma regresyon modellerinde çoklu baglantı problemi oldu ˘ gu durumlarda kullanılabilecek bazı tahmin ediciler incelenmi¸stir. Ayrıca ˘ Liu-tipi tahmin edicisinden yararlanılarak hemen hemen yansız Liu-tipi tahmin edicisi ile modifiye hemen hemen yansız Liu-tipi tahmin edicisi gamma regresyon modeli için önerilmi¸stir. Önerilen tahmin edicilerin ve Liu-tipi tahmin edicisinin teorik özellikleri incelenerek birbirleriyle kar¸sıla¸stır maları yapılmı¸stır. Ayrıca bahsi geçen tahmin ediciler Monte Carlo simülasyon çalı¸sması ve gerçek veri uygulaması kullanılarak kar¸sıla¸stırılmı¸stır. Nümerik çalı¸smalardan elde edilen sonuçlar teorik sonuçların dogrulu ˘ gunu desteklemektedir

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder