Yazar "Korkmaz, Merve" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Almost unbiased Liu-type estimators in gamma regression model(Elsevier, 2022) Asar, Yasin; Korkmaz, MerveThe Liu-type estimator has been consistently demonstrated to be an attractive shrinkage method to reduce the effect of multicollinearity problem. It is known that multicollinear-ity affects the variance of the maximum likelihood estimator negatively in gamma regression model. Therefore, an almost unbiased Liu-type estimator together with a modified version of it is proposed to overcome the multicollinearity problem. The performance of the new estimators is investigated both theoretically and numerically via a Monte Carlo simulation experiment and a real data illustration. Based on the results, it is observed that the proposed estimators can bring significant improvement relative to other competitor estimators. (c) 2021 Elsevier B.V. All rights reserved.Öğe Gamma Regresyon Modelinde Bazı Tahmin Edicilerin Karşılattırılması(Necmettin Erbakan Üniversitesi Fen Bilimleri Enstitüsü, 2022) Korkmaz, Merve; Asar, YasinDogrusal modellere benzer olarak genelle¸stirilmi¸s do ˘ grusal modellerin bir üyesi olan gamma ˘ regresyon modelinde de çoklu baglantı problemi oldu ˘ gunda en çok olabilirlik tahmin edicisinin per- ˘ formansı bu durumdan kötü etkilenmektedir. Bu çalı¸smada, gamma regresyon modellerinde çoklu baglantı problemi oldu ˘ gu durumlarda kullanılabilecek bazı tahmin ediciler incelenmi¸stir. Ayrıca ˘ Liu-tipi tahmin edicisinden yararlanılarak hemen hemen yansız Liu-tipi tahmin edicisi ile modifiye hemen hemen yansız Liu-tipi tahmin edicisi gamma regresyon modeli için önerilmi¸stir. Önerilen tahmin edicilerin ve Liu-tipi tahmin edicisinin teorik özellikleri incelenerek birbirleriyle kar¸sıla¸stır maları yapılmı¸stır. Ayrıca bahsi geçen tahmin ediciler Monte Carlo simülasyon çalı¸sması ve gerçek veri uygulaması kullanılarak kar¸sıla¸stırılmı¸stır. Nümerik çalı¸smalardan elde edilen sonuçlar teorik sonuçların dogrulu ˘ gunu desteklemektedir