Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Maziz, Ammar" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Finite Element Analysis of Impact-Induced Damage in Pressurized Hybrid Composites Pipes
    (World Scientific Publ Co Pte Ltd, 2021) Maziz, Ammar; Tarfaoui, Mostapha; Rechak, Said; Nachtane, Mourad; Gemi, Lokman
    The high mechanical performance of filament wound hybrid composite pipes can be adversely affected by their low resistance to accidental impact. Loads of dynamic origin are dangerous and cause consequences on the operation of pipes because the damage is often not detected and can affect the structural integrity of composite pipes. In this work, a finite element (FE) model of pressurized hybrid composite pipe is developed and performed to predict the damage initiation and evolution under low-velocity impact through simulations with ABAQUS/Explicit. Hashin's failure theory is used as failure criterion. At the first stage, load-time histories, and impactor displacement time limits are estimated in an FE model. The numerical results are confronted with the experimental values published in the literature. Once the model was validated, damage initiation and propagation were analyzed, where it is observed that damage mainly occurs by matrix cracking, damage evolution in the matrix in tension, compression and shear are presented and discussed in detail.
  • Küçük Resim Yok
    Öğe
    Influence of winding angles on hoop stress in composite pressure vessels: Finite element analysis
    (Elsevier, 2024) Azeem, Mohammad; Ya, Hamdan H.; Alam, Mohammad Azad; Kumar, Mukesh; Sajid, Zubair; Gohari, Soheil; Maziz, Ammar
    Various pressure vessels from Type I to Type IV are used to store hydrogen and compressed natural gas (CNG) at high pressures. The polymeric liner in Type IV composite pressure vessels (CPVs) does not share the load, unlike those with metallic liners (Type III); hence, the composite layers share the entire load. The winding angles play a crucial role in tailoring the pressure-bearing properties of CPVs. This study investigated the effect of fiber winding angles on the hoop stress in Type IV CPVs using finite element (FE) analysis, and the advantage of multi -angle winding was realized. Stress analysis is vital to ensure that the vessel can withstand the intended operating conditions without undergoing failure. A series of finite element analyses (FEA) was carried out using the Abaqus FE simulation software to study the behavior of an anisotropic fiber-reinforced CPV with varied winding schemes. A stress analysis was performed, and various winding schemes were compared for different cases. The hoop stress in various configurations was documented to assess and compare various winding configurations.
  • Küçük Resim Yok
    Öğe
    A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact
    (Elsevier Sci Ltd, 2021) Maziz, Ammar; Tarfaoui, Mostapha; Gemi, Lokman; Rechak, Said; Nachtane, Mourad
    Pressurized hybrid composite pipe structures, produced by filament wound subjected to impact loads, were numerically investigated. A combined 3D-FE Model based on the use of interlaminar and intralaminar damage models is established. Intralaminar damages such as matrix cracking and fibre failures are predicted using 3D Hashin criteria, whereas interlaminar damage (delamination) was evaluated using cohesive zone elements. The damage model was coded and implemented as a user-defined material subroutine (VUMAT) for Abaqus/Explicit. Numerical results in the form of contact force, displacement and energy dissipated compare well with the experimental results. Predicted matrix damage in each cross-ply of hybrid composite pipe and delamination onset were also presented in this paper. The ability of this new 3D model to simulate the damage evolution in the full-scale pressurized hybrid composite pipe under low-velocity impact events were demonstrated throughout comparison with existing experimental results published.

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder