Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ogutcuoglu, Esra" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A new biased estimation method in tobit regression: theory and application
    (Taylor & Francis Ltd, 2021) Asar, Yasin; Ogutcuoglu, Esra
    In this study, the effects of multicollinearity on the maximum likelihood estimator are analyzed in the tobit regression model. It is known that the near-linear dependencies in the design matrix affect the maximum likelihood estimation negatively, namely, the standard errors become so large so that the estimations are said to be inconsistent. Therefore, a new biased estimator being a generalization of the well-known Liu estimator is introduced as an alternative to the maximum likelihood estimator. Mean squared error properties of the estimators are investigated theoretically. In order to evaluate the performances of the estimators, a Monte Carlo simulation study is designed and simulated mean squared error is used as a performance criterion. Finally, the benefits of the new estimator is illustrated via real data applications.

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder