Yazar "Ortner, Gernot" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experts' recommendations in laser use for the endoscopic treatment of prostate hypertrophy: a comprehensive guide by the European Section of Uro-Technology (ESUT) and Training-Research in Urological Surgery and Technology (TRUST)-Group(Springer, 2023) Ortner, Gernot; Guven, Selcuk; Somani, Bhaskar Kumar; Nicklas, Andre; Scoffone, Cesare Marco; Gracco, Cecilia; Goumas, Ioannis KartalasPurposeTo identify expert laser settings for BPH treatment and evaluate the application of preventive measures to reduce complications.MethodsA survey was conducted after narrative literature research to identify relevant questions regarding laser use for BPH treatment (59 questions). Experts were asked for laser settings during specific clinical scenarios. Settings were compared for the reported laser types, and common settings and preventive measures were identified.ResultsTwenty-two experts completed the survey with a mean filling time of 12.9 min. Ho:YAG, Thulium fiber laser (TFL), continuous wave (cw) Tm:YAG, pulsed Tm:YAG and Greenlight & TRADE; lasers are used by 73% (16/22), 50% (11/22), 23% (5/22), 13.6% (3/22) and 9.1% (2/22) of experts, respectively. All experts use anatomical enucleation of the prostate (EEP), preferentially in one- or two-lobe technique. Laser settings differ significantly between laser types, with median laser power for apical/main gland EEP of 75/94 W, 60/60 W, 100/100 W, 100/100 W, and 80/80 W for Ho:YAG, TFL, cwTm:YAG, pulsed Tm:YAG and Greenlight & TRADE; lasers, respectively (p = 0.02 and p = 0.005). However, power settings within the same laser source are similar. Pulse shapes for main gland EEP significantly differ between lasers with long and pulse shape modified (e.g., Moses, Virtual Basket) modes preferred for Ho:YAG and short pulse modes for TFL (p = 0.031).ConclusionHo:YAG lasers no longer seem to be the mainstay of EEP. TFL lasers are generally used in pulsed mode though clinical applicability for quasi-continuous settings has recently been demonstrated. One and two-lobe techniques are beneficial regarding operative time and are used by most experts.Öğe Experts' recommendations in laser use for the treatment of upper tract urothelial carcinoma: a comprehensive guide by the European Section of Uro-Technology (ESUT) and Training Research in Urological Surgery and Technology (TRUST) group(Springer, 2023) Ortner, Gernot; Somani, Bhaskar Kumar; Guven, Selcuk; Kitzbichler, Gerhard; Traxer, Olivier; Giusti, Guido; Proietti, SilviaPurpose To highlight and compare experts' laser settings during endoscopic laser treatment of upper tract urothelial carcinoma (UTUC), to identify measures to reduce complications, and to propose guidance for endourologists.Methods Following a focused literature search to identify relevant questions, a survey was sent to laser experts. We asked participants for typical settings during specific scenarios (ureteroscopy (URS), retrograde intrarenal surgery (RIRS), and percutaneous treatment). These settings were compared among the reported laser types to find common settings and limits. Additionally, we identified preventive measures commonly applied during surgery.Results Twenty experts completed the survey, needing a mean time of 12.7 min. Overall, most common laser type was Holmium-Yttrium-Aluminum-Garnet (Ho:YAG) (70%, 14/20) followed by Thulium fiber laser (TFL) (45%, 9/20), pulsed Thulium-Yttrium-Aluminum-Garnet (Tm:YAG) (3/20, 15%), and continuous wave (cw)Tm:YAG (1/20, 5%). Pulse energy for the treatment of distal ureteral tumors was significantly different with median settings of 0.9 J, 1 J and 0.45 J for Ho:YAG, TFL and pulsed Tm:YAG, respectively (p = 0.048). During URS and RIRS, pulse shapes were significantly different, with Ho:YAG being used in long pulse and TFL in short pulse mode (all p < 0.05). We did not find further disparities.Conclusion Ho:YAG is used by most experts, while TFL is the most promising alternative. Laser settings largely do not vary significantly. However, further research with novel lasers is necessary to define the optimal approach. With the recent introduction of small caliber and more flexible scopes, minimal-invasive UTUC treatment is further undergoing an extension of applicability in appropriately selected patients.