Yazar "Ulutas, Ahsen" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Hourly Solar Irradiation Prediction by Artificial Neural Network Based on Similarity Analysis of Time Series(IEEE, 2018) Ulutas, Ahsen; Cakmak, Recep; Altas, Ismail HakkiSolar energy is a renewable energy source which has intermittent and variable characteristic. Solar irradiation must be predicted in advance in an electrical grid which has solar energy based electrical power generation systems in order to operate the electrical grid stable and efficient. In this study, a multi-layered, feed forward artificial neural network (ANN) has been designed to predict the hourly solar irradiation of next day. The designed ANN has been trained by data which has been obtained via similarity analysis. Total solar irradiation on horizontal plane, relative humidity and temperature data of Trabzon province for 2015-2017 have been used as the training data set. Hourly solar irradiation prediction has been performed by utilizing the designed ANN and test data set. The prediction results have been evaluated as to root mean square (RMS), mean absolute error (MAE) and mean absolute percentage error (MAPE) performance criteria. The obtained performance criteria results show that the proposed ANN could make prediction with acceptable error.Öğe Machine Learning-Based Intrusion Detection for Achieving Cybersecurity in Smart Grids Using IEC 61850 GOOSE Messages(Mdpi, 2021) Ustun, Taha Selim; Hussain, S. M. Suhail; Ulutas, Ahsen; Onen, Ahmet; Roomi, Muhammad M.; Mashima, DaisukeIncreased connectivity is required to implement novel coordination and control schemes. IEC 61850-based communication solutions have become popular due to many reasons-object-oriented modeling capability, interoperable connectivity and strong communication protocols, to name a few. However, communication infrastructure is not well-equipped with cybersecurity mechanisms for secure operation. Unlike online banking systems that have been running such security systems for decades, smart grid cybersecurity is an emerging field. To achieve security at all levels, operational technology-based security is also needed. To address this need, this paper develops an intrusion detection system for smart grids utilizing IEC 61850's Generic Object-Oriented Substation Event (GOOSE) messages. The system is developed with machine learning and is able to monitor the communication traffic of a given power system and distinguish normal events from abnormal ones, i.e., attacks. The designed system is implemented and tested with a realistic IEC 61850 GOOSE message dataset under symmetric and asymmetric fault conditions in the power system. The results show that the proposed system can successfully distinguish normal power system events from cyberattacks with high accuracy. This ensures that smart grids have intrusion detection in addition to cybersecurity features attached to exchanged messages.