Yazar "Yildiz, Ilkay" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Benzoxazines as new human topoisomerase I inhibitors and potential poisons(Springer International Publishing Ag, 2020) Foto, Egemen; Ozen, Cigdem; Zilifdar, Fatma; Tekiner-Gulbas, Betul; Yildiz, Ilkay; Aki-Yalcin, Esin; Diril, NuranBackground The numbers of topoisomerase I targeted drugs on the market are very limited although they are used clinically for treatment of solid tumors. Hence, studies about finding new chemical structures which specifically target topoisomerase I are still remarkable. Objectives In this present study, we tested previously synthesized 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives to reveal their human DNA topoisomerase I inhibitory potentials. Methods We investigated inhibitory activities of 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives on human topoisomerase I by relaxation assay to clarify inhibition mechanisms of effective derivatives with EMSA and T4 DNA ligase based intercalation assay. With SAR study, it was tried to find out effective groups in the ring system. Results While 10 compounds showed catalytic inhibitory activity, 8 compounds were found to be potential topoisomerase poisons. 4 of them also exhibited both activities. 2-hydroxy-3,4-dihydro-2H-1,4-benzoxazin-3-one (BONC-001) was the most effective catalytic inhibitor (IC50:8.34 mM) and ethyl 6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-acetate (BONC-013) was the strongest potential poison (IC50:0.0006 mM). BONC-013 was much more poisonous than camptothecin (IC50:0.034 mM). Intercalation assay showed that BONC-013 was not an intercalator and BONC-001 most probably prevented enzyme-substrate binding in an unknown way. Another important result of this study was that OH group instead of ethoxycarbonylmethyl group at R position of benzoxazine ring was important for hTopo I catalytic inhibition while the attachment of a methyl group of R1 position at R-2 position were play a role for increasing of its poisonous effect. Conclusion As a result, we presented new DNA topoisomerase I inhibitors which might serve novel constructs for future anticancer agent designs. Graphical abstractÖğe Biological activity and ADME/Tox prediction of some 2-substituted benzoxazole derivatives(Academic Press Inc Elsevier Science, 2022) Foto, Fatma Zilifdar; Foto, Egemen; Ertan-Bolelli, Tugba; Yildiz, IlkayIn this study, we mainly focused on some in vitro biological activities of a series of (5 or 6)-amino-2- (substituted phenyl and benzyl) benzoxazole derivatives. For this purpose, we tested cytotoxic and genotoxic activities of them on cancer cell lines and their topoisomerase inhibitory activities. We also tested their cytotoxic and genotoxic activities on non-cancerous cells (L929) and their mutagenic activities by Ames test to evaluate their effects on healthy cells. Only TD5 was found cytotoxic on all the tested cancer cell lines and did not exhibit either cytotoxic or genotoxic activities against healthy cells, whereas TD1, TD2, TD3 and TD7 were more cytotoxic against only HeLa cells. Only TD4 was found as mutagenic derivative. None of the compounds had any topoisomerase inhibitory activities nevertheless some of them caused inhibition of topoisomerase II activity. Additionally, we used an in silico model to predict the drug-like properties of them to evaluate their bioavailability to the QikProp Properties Predictions. All the calculated properties were found in a permissible range. According to the data obtained from biological activity studies, it can be concluded that the methylene bridge at the position 2 of benzoxazole ring decreases cytotoxic activity on cancer cells and inhibitory activity on DNA topoisomerases.