Yazar "Zilifdar, Fatma" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Benzoxazines as new human topoisomerase I inhibitors and potential poisons(Springer International Publishing Ag, 2020) Foto, Egemen; Ozen, Cigdem; Zilifdar, Fatma; Tekiner-Gulbas, Betul; Yildiz, Ilkay; Aki-Yalcin, Esin; Diril, NuranBackground The numbers of topoisomerase I targeted drugs on the market are very limited although they are used clinically for treatment of solid tumors. Hence, studies about finding new chemical structures which specifically target topoisomerase I are still remarkable. Objectives In this present study, we tested previously synthesized 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives to reveal their human DNA topoisomerase I inhibitory potentials. Methods We investigated inhibitory activities of 3,4-dihydro-2H-1,4-benzoxazin-3-one derivatives on human topoisomerase I by relaxation assay to clarify inhibition mechanisms of effective derivatives with EMSA and T4 DNA ligase based intercalation assay. With SAR study, it was tried to find out effective groups in the ring system. Results While 10 compounds showed catalytic inhibitory activity, 8 compounds were found to be potential topoisomerase poisons. 4 of them also exhibited both activities. 2-hydroxy-3,4-dihydro-2H-1,4-benzoxazin-3-one (BONC-001) was the most effective catalytic inhibitor (IC50:8.34 mM) and ethyl 6-chloro-4-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-acetate (BONC-013) was the strongest potential poison (IC50:0.0006 mM). BONC-013 was much more poisonous than camptothecin (IC50:0.034 mM). Intercalation assay showed that BONC-013 was not an intercalator and BONC-001 most probably prevented enzyme-substrate binding in an unknown way. Another important result of this study was that OH group instead of ethoxycarbonylmethyl group at R position of benzoxazine ring was important for hTopo I catalytic inhibition while the attachment of a methyl group of R1 position at R-2 position were play a role for increasing of its poisonous effect. Conclusion As a result, we presented new DNA topoisomerase I inhibitors which might serve novel constructs for future anticancer agent designs. Graphical abstractÖğe Discovery of 5-(or 6)-benzoxazoles and oxazolo[4,5-b]pyridines as novel candidate antitumor agents targeting hTopo II?(Academic Press Inc Elsevier Science, 2021) Karatas, Esin; Foto, Egemen; Ertan-Bolelli, Tugba; Yalcin-Ozkat, Gozde; Yilmaz, Serap; Ataei, Sanaz; Zilifdar, FatmaDiscovery of novel anticancer drugs which have low toxicity and high activity is very significant area in anticancer drug research and development. One of the important targets for cancer treatment research is topoisomerase enzymes. In order to make a contribution to this field, we have designed and synthesized some 5(or 6)-nitro-2-(substitutedphenyl)benzoxazole (1a-1r) and 2-(substitutedphenyl)oxazolo[4,5-b]pyridine (2a-2i) derivatives as novel candidate antitumor agents targeting human DNA topoisomerase enzymes (hTopo I and hTopo II alpha). Biological activity results were found very promising for the future due to two compounds, 5-nitro-2-(4butylphenyl)benzoxazole (1i) and 2-(4-butylphenyl)oxazolo[4,5-b]pyridine (2i), that inhibited hTopo II alpha with 2 mu M IC50 value. These two compounds were also found to be more active than reference drug etoposide. However, 1i and 2i did not show any satisfactory cyctotoxic activity on the HeLa, WiDR, A549, and MCF7 cancer cell lines. Moreover, molecular docking and molecular dynamic simulations studies for the most active compounds were applied in order to understand the mechanism of inhibition activity of hTopo II alpha. In addition, in silico ADME/Tox studies were performed to predict drug-likeness and pharmacokinetic properties of all the tested compounds.