On the dynamics of a higher-order fuzzy difference equation with rational terms
dc.contributor.author | Yalcinkaya, Ibrahim | |
dc.contributor.author | El-Metwally, Hamdy | |
dc.contributor.author | Bayram, Mustafa | |
dc.contributor.author | Tollu, Durhasan Turgut | |
dc.date.accessioned | 2024-02-23T13:43:54Z | |
dc.date.available | 2024-02-23T13:43:54Z | |
dc.date.issued | 2023 | |
dc.department | NEÜ | en_US |
dc.description.abstract | In this paper, we investigate existence, boundedness, asymptotic behavior and the oscillatory behavior of the positive solutions of the fuzzy difference equation z(n+1) = A + B/z(n-m1) + C/z(n-m2), n is an element of N-0, where (z(n)) is a sequence of positive fuzzy numbers, A, B, C and the initial values z(-j), j = 0, 1,..., s, are positive fuzzy numbers and m(1), m(2) are nonnegative integers with s = max {m(1), m(2)}. By studying this equation, we generalize and improve some results from the literature. | en_US |
dc.identifier.doi | 10.1007/s00500-023-08586-y | |
dc.identifier.issn | 1432-7643 | |
dc.identifier.issn | 1433-7479 | |
dc.identifier.scopus | 2-s2.0-85161446793 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00500-023-08586-y | |
dc.identifier.uri | https://hdl.handle.net/20.500.12452/10966 | |
dc.identifier.wos | WOS:001005845600008 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Soft Computing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fuzzy Number | en_US |
dc.subject | Alpha-Cuts | en_US |
dc.subject | Fuzzy Difference Equations | en_US |
dc.subject | Boundedness | en_US |
dc.subject | Convergence | en_US |
dc.title | On the dynamics of a higher-order fuzzy difference equation with rational terms | en_US |
dc.type | Article | en_US |