COMPARING THE NEW FRACTIONAL DERIVATIVE OPERATORS INVOLVING EXPONENTIAL AND MITTAG-LEFFLER KERNEL

dc.contributor.authorYavuz, Mehmet
dc.contributor.authorOzdemir, Necati
dc.date.accessioned2024-02-23T14:37:30Z
dc.date.available2024-02-23T14:37:30Z
dc.date.issued2020
dc.departmentNEÜen_US
dc.description.abstractIn this manuscript, we have proposed a comparison based on newly defined fractional derivative operators which are called as Caputo-Fabrizio (CF) and Atangana-Baleanu (AB). In 2015, Caputo and Fabrizio established a new fractional operator by using exponential kernel. After one year, Atangana and Baleanu recommended a different-type fractional operator that uses the generalized Mittag-Leffler function (MLF). Many real-life problems can be modelled and can be solved by numerical-analytical solution methods which are derived with these operators. In this paper, we suggest an approximate solution method for PDEs of fractional order by using the mentioned operators. We consider the Laplace homotopy transformation method (LHTM) which is the combination of standard homotopy technique (SHT) and Laplace transformation method (LTM). In this study, we aim to demonstrate the effectiveness of the aforementioned method by comparing the solutions we have achieved with the exact solutions. Furthermore, by constructing the error analysis, we test the practicability and usefulness of the method.en_US
dc.description.sponsorshipBalikesir University Scientific Research Projects Unit [BAP:2018/064]en_US
dc.description.sponsorshipThis research was supported by Balikesir University Scientific Research Projects Unit, BAP:2018/064.en_US
dc.identifier.doi10.3934/dcdss.2020058
dc.identifier.endpage1006en_US
dc.identifier.issn1937-1632
dc.identifier.issn1937-1179
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85078910702en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage995en_US
dc.identifier.urihttps://doi.org/10.3934/dcdss.2020058
dc.identifier.urihttps://hdl.handle.net/20.500.12452/16136
dc.identifier.volume13en_US
dc.identifier.wosWOS:000502831800040en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.ispartofDiscrete And Continuous Dynamical Systems-Series Sen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCaputo-Fabrizio Fractional Operatoren_US
dc.subjectAtangana-Baleanu Fractional Operatoren_US
dc.subjectNon-Singular Kernelen_US
dc.subjectNon-Localityen_US
dc.subjectPerturbation Methoden_US
dc.subjectLaplace Transformationen_US
dc.titleCOMPARING THE NEW FRACTIONAL DERIVATIVE OPERATORS INVOLVING EXPONENTIAL AND MITTAG-LEFFLER KERNELen_US
dc.typeArticleen_US

Dosyalar