Solutions of partial differential equations using the fractional operator involving Mittag-Leffler kernel
Küçük Resim Yok
Tarih
2018
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, time-fractional partial differential equations (FPDEs) involving singular and nonsingular kernel are considered. We have obtained the approximate analytical solution for linear and nonlinear FPDEs using the Laplace perturbation method (LPM) defined with the Liouville-Caputo (LC) and Atangana-Baleanu (AB) fractional operators. The AB fractional derivative is defined with the Mittag-Leffler function and has all the properties of a classical fractional derivative. In addition, the AB operator is crucial when utilizing the Laplace transform (LT) to get solutions of some illustrative problems with initial condition. We show that the mentioned method is a rather effective and powerful technique for solving FPDEs. Besides, we show the solution graphs for different values of fractional order a, distance term x and time value t. The classical integer-order features are fully recovered if a is equal to 1.
Açıklama
Anahtar Kelimeler
[Keyword Not Available]
Kaynak
European Physical Journal Plus
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
133
Sayı
6