Thermal properties, microstructure analysis, and environmental benefits of basalt fiber reinforced concrete

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Sage Publications Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Numerous scientists have studied basalt fiber (BF) reinforced concrete and found encouraging results. However, information is scattered, and compressive assessment is yet necessary to collect the data from prior research on BF, present research advancement, and future research guidelines of BF reinforced concrete. Furthermore, mostly research focus to review on strength and durability aspects of BF reinforced concrete while no researched focus on thermal properties, microstructure analysis and environmental benefits of BF reinforced concrete. Therefore, the primary focuses of this paper are BF treatment, BF reinforced concrete performance at high temperatures, microstructure analysis, environmental advantages, and application in civil engineering. Results show that BF-reinforced concrete performs much better than traditional concrete at high temperatures. Additionally, the use of BF enhanced the heat conductivity of concrete. BF addition to concrete seems to have reduced interfacial transition zone (ITZ) fractures, according to a microstructure study. When opposed to traditional steel fibers, BFs may be thought as reinforcements that are less harmful to the environment. The study also highlights the significance of BFs in the building industry. The assessment also identified research gap research for further studies.

Açıklama

Anahtar Kelimeler

Basalt Fiber, Elevated Temperature, Thermal Conductivity And Scan Electronic Microscopy

Kaynak

Journal Of Engineered Fibers And Fabrics

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

18

Sayı

Künye