Cayley formula in Minkowski space-time
dc.contributor.author | Erdogdu, Melek | |
dc.contributor.author | Ozdemir, Mustafa | |
dc.date.accessioned | 2024-02-23T14:26:26Z | |
dc.date.available | 2024-02-23T14:26:26Z | |
dc.date.issued | 2015 | |
dc.department | NEÜ | en_US |
dc.description.abstract | In this paper, Cayley formula is derived for 4 x 4 semi-skew-symmetric real matrices in E-1(4). For this purpose, we use the decomposition of a semi-skew-symmetric matrix A = theta(1)A(1) + theta(2)A(2) by two unique semi-skew-symmetric matrices A(1) and A(2) satisfying the properties A(1)A(2) = 0, A(1)(3) = A(1) and A(2)(3) = -A(2). Then, we find Lorentzian rotation matrices with semi-skew-symmetric matrices by Cayley formula. Furthermore, we give a way to find the semi-skew-symmetric matrix A for a given Lorentzian rotation matrix R such that R = Cay(A). | en_US |
dc.identifier.doi | 10.1142/S0219887815500589 | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.issn | 1793-6977 | |
dc.identifier.issue | 5 | en_US |
dc.identifier.scopus | 2-s2.0-84929959889 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org/10.1142/S0219887815500589 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12452/14181 | |
dc.identifier.volume | 12 | en_US |
dc.identifier.wos | WOS:000355323900007 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.ispartof | International Journal Of Geometric Methods In Modern Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Minkowski Space-Time | en_US |
dc.subject | Rotation Matrix | en_US |
dc.subject | Cayley Formula | en_US |
dc.title | Cayley formula in Minkowski space-time | en_US |
dc.type | Article | en_US |