Virtual Investigation on the Response of Glare to Low Velocity Impact

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

IEEE

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Due to the increasing cost of experiments and the increased time required to complete the experimental process, it is more economical to conduct experiments in the form of virtual tests. Therefore, low velocity impact simulation was carried out on fiber metal laminates, FMLs with an impactor with various weights in our study. LS-DYNA software was selected to perform the simulation. Fiber metal laminate is composed of 2024-T3 Aluminum and Glass/Epoxy layers. The layers are modeled as isotropic, and anisotropic material. The stacking sequence of FML is (Al/0/90/Al). Two opposite sides of the square shaped FML are fixed and the other sides are left free. Steel strikers with masses of 0.15 kg, 0.30 kg and 0.45 kg were used in the analyses, respectively. The speed of the striker at first contact with the FML is 10 mm/ms. As a result of the tests, force-time, force-displacement, velocity-time and energy - time variations were also obtained. The results were presented as graphs. It has been found that the FML structure absorbs an average of 73.4% of the impact energy because of the low-velocity impact, thus preserving the integrity and functionality of the designed structure. Thanks to such numerical experiments carried out before production, the mechanical properties of the designed structure can be evaluated.

Açıklama

10th International Conference on Recent Advances in Air and Space Technologies (RAST) -- JUN 07-09, 2023 -- Istanbul, TURKEY

Anahtar Kelimeler

Composite, Fiber Metal Laminates, Glare, Low Velocity Impact, Ls-Dyna

Kaynak

2023 10th International Conference On Recent Advances In Air And Space Technologies, Rast

WoS Q Değeri

Scopus Q Değeri

Cilt

Sayı

Künye