Developing a restricted two-parameter Liu-type estimator: A comparison of restricted estimators in the binary logistic regression model

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Taylor & Francis Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the context of estimating regression coefficients of an ill-conditioned binary logistic regression model, we develop a new biased estimator having two parameters for estimating the regression vector parameter when it is subjected to lie in the linear subspace restriction H = h. The matrix mean squared error and mean squared error (MSE) functions of these newly defined estimators are derived. Moreover, a method to choose the two parameters is proposed. Then, the performance of the proposed estimator is compared to that of the restricted maximum likelihood estimator and some other existing estimators in the sense of MSE via a Monte Carlo simulation study. According to the simulation results, the performance of the estimators depends on the sample size, number of explanatory variables, and degree of correlation. The superiority region of our proposed estimator is identified based on the biasing parameters, numerically. It is concluded that the new estimator is superior to the others in most of the situations considered and it is recommended to the researchers.

Açıklama

Anahtar Kelimeler

Logistic Regression, Mean Squared Error, Multicollinearity, Restricted Estimators, Primary 62j02, Secondary 62j07

Kaynak

Communications In Statistics-Theory And Methods

WoS Q Değeri

Q4

Scopus Q Değeri

Q3

Cilt

46

Sayı

14

Künye