Photonic bandgap engineering in (VO2) n /(WSe2) n photonic superlattice for versatile near- and mid-infrared phase transition applications

dc.contributor.authorBasyooni, Mohamed A.
dc.contributor.authorZaki, Shrouk E.
dc.contributor.authorTihtih, Mohammed
dc.contributor.authorEker, Yasin Ramazan
dc.contributor.authorAtes, Sule
dc.date.accessioned2024-02-23T14:20:46Z
dc.date.available2024-02-23T14:20:46Z
dc.date.issued2022
dc.departmentNEÜen_US
dc.description.abstractThe application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivity varies by orders of magnitude, vanadium oxide (VO2) shows potential as a building block for infrared switching and sensing devices. We reported a first principle study of superlattice structures of VO2 as a strongly correlated phase transition material and tungsten diselenide (WSe2) as a two-dimensional transition metal dichalcogenide layer. Based on first-principles calculations, we exploit the effect of semiconductor monoclinic and metallic tetragonal state of VO2 with WSe2 in a photonic superlattices structure through the near and mid-infrared (NIR-MIR) thermochromic phase transition regions. By increasing the thickness of the VO2 layer, the photonic bandgap (PhB) gets red-shifted. We observed linear dependence of the PhB width on the VO2 thickness. For the monoclinic case of VO2, the number of the forbidden bands increase with the number of layers of WSe2. New forbidden gaps are preferred to appear at a slight angle of incidence, and the wider one can predominate at larger angles. We presented an efficient way to control the flow of the NIR-MIR in both summer and winter environments for phase transition and photonic thermochromic applications. This study's findings may help understand vanadium oxide's role in tunable photonic superlattice for infrared switchable devices and optical filters.en_US
dc.identifier.doi10.1088/1361-648X/ac7189
dc.identifier.issn0953-8984
dc.identifier.issn1361-648X
dc.identifier.issue32en_US
dc.identifier.pmid35588726en_US
dc.identifier.scopus2-s2.0-85132452059en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1088/1361-648X/ac7189
dc.identifier.urihttps://hdl.handle.net/20.500.12452/13304
dc.identifier.volume34en_US
dc.identifier.wosWOS:000811486400001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherIop Publishing Ltden_US
dc.relation.ispartofJournal Of Physics-Condensed Matteren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectVanadium Dioxideen_US
dc.subjectTungsten Diselenideen_US
dc.subjectPhotonic Superlatticeen_US
dc.subjectSemiconductor Transition Metal Dichalcogenidesen_US
dc.subjectThermochromicen_US
dc.titlePhotonic bandgap engineering in (VO2) n /(WSe2) n photonic superlattice for versatile near- and mid-infrared phase transition applicationsen_US
dc.typeArticleen_US

Dosyalar