Molecular Engineering of Azahomofullerene-based Electron Transporting Materials for Efficient and Stable Perovskite Solar Cells

dc.contributor.authorChavan, Rohit D.
dc.contributor.authorBonczak, Bartlomiej
dc.contributor.authorKruszynska, Joanna
dc.contributor.authorMahapatra, Apurba
dc.contributor.authorAns, Muhammad
dc.contributor.authorNawrocki, Jan
dc.contributor.authorNikiforow, Kostiantyn
dc.date.accessioned2024-02-23T14:16:34Z
dc.date.available2024-02-23T14:16:34Z
dc.date.issued2023
dc.departmentNEÜen_US
dc.description.abstractThe rational molecular design of fullerene-based molecules with exceptional physical and electrical properties is in high demand to ensure efficient charge transport at the perovskite/electron transport layer interface. In this work, novel azahomofullerene (AHF) is designed, synthesized, and introduced as the interlayer between the SnO2/perovskite interface in planar n-i-p heterojunction perovskite solar cells (PSCs). The AHF molecule (denoted as AHF-4) is proven to enhance charge transfer capability compared to the commonly used fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) due to its superior coordination interaction and electronic coupling with the SnO2 surface. In addition, the AHF-4 interlayer concurrently improves the quality of the perovskite film and reduces charge recombination in PSCs. The resultant AHF-4-based device exhibits a maximum efficiency of 21.43% with lower hysteresis compared to the PCBM device (18.56%). Benefiting from the enhanced stability of the AHF-4 film toward light soaking and elevated temperature, the AHF-4-based devices show improved stability under continuous 1 sun illumination at the maximum power point and 45 ?. Our work opens a new direction to the design of AHF derivatives with favorable physical and electrical properties as an interlayer material to improve both the performance and stability of PSCs.en_US
dc.description.sponsorshipNational Science Centre [2020/38/E/ST5/00267]; Interdisciplinary Centre for Mathematical and Computational Modelling at the University of Warsaw (ICM UW)en_US
dc.description.sponsorshipR.D.C., M.A., J. K., and D.P. acknowledge the NationalScience Centre (grant SONATA BIS 10, no. 2020/38/E/ST5/00267) forfinancial support. The computational study was carried out with thesupport of the Interdisciplinary Centre for Mathematical and ComputationalModelling at the University of Warsaw (ICM UW).en_US
dc.identifier.doi10.1021/acs.chemmater.3c01995
dc.identifier.endpage8320en_US
dc.identifier.issn0897-4756
dc.identifier.issn1520-5002
dc.identifier.issue19en_US
dc.identifier.scopus2-s2.0-85175022428en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage8309en_US
dc.identifier.urihttps://doi.org/10.1021/acs.chemmater.3c01995
dc.identifier.urihttps://hdl.handle.net/20.500.12452/12718
dc.identifier.volume35en_US
dc.identifier.wosWOS:001071377500001en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAmer Chemical Socen_US
dc.relation.ispartofChemistry Of Materialsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject[Keyword Not Available]en_US
dc.titleMolecular Engineering of Azahomofullerene-based Electron Transporting Materials for Efficient and Stable Perovskite Solar Cellsen_US
dc.typeArticleen_US

Dosyalar