Liu-type estimator in Conway-Maxwell-Poisson regression model: theory, simulation and application
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor & Francis Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Recently, many authors have been motivated to propose a new regression estimator in the case of multicollinearity. The most well-known of these estimators are ridge, Liu and Liu-type estimators. Many studies on regression models have shown that the Liu-type estimator is a good alternative to the ridge and Liu estimators in the literature. We consider a new Liu-type estimator, an alternative to ridge and Liu estimators in Conway-Maxwell-Poisson regression model. Moreover, we study the theoretical properties of the Liu-type estimator, and we provide some theorems showing under which conditions that the Liu-type estimator is superior to the others. Since there are two parameters of the Liu-type estimator, we also propose a method to select the parameters. We designed a simulation study to demonstrate the superiority of the Liu-type estimator compared to the ridge and Liu estimators. We also evaluated the usefulness and superiority of the proposed regression estimator with a practical data example. As a result of the simulation and real-world data example, we conclude that the proposed regression estimator is superior to its competitors according to the mean square error criterion.
Açıklama
Anahtar Kelimeler
Conway-Maxwell-Poisson Regression Model, Liu Estimator, Liu-Type Estimator, Monte Carlo Simulation, Multicollinearity
Kaynak
Statistics
WoS Q Değeri
Scopus Q Değeri
Q3