Differential geometric approach of Betchov-Da Rios soliton equation
Yükleniyor...
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hacettepe University Faculty of Science
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In the present paper, we investigate differential geometric properties the soliton surface M associated with Betchov-Da Rios equation. Then, we give derivative formulas of Frenet frame of unit speed curve 4) = 4)(s, t) for all t. Also, we discuss the linear map of Weingarten type in the tangent space of the surface that generates two invariants: k and h. Moreover, we obtain the necessary and sufficient conditions for the soliton surface associated with Betchov-Da Rios equation to be a minimal surface. Finally, we examine a soliton surface associated with Betchov-Da Rios equation as an application. Mathematics Subject Classification (2020). 35Q55, 53A05
Açıklama
Makale
WOS:000964265900009
PubMed ID:35296227
WOS:000964265900009
PubMed ID:35296227
Anahtar Kelimeler
Betchov-Da Rios Equation, Localized İnduction Equation (LIE), Smoke Ring Equation, Vortex Filament Equation, Nonlinear Schrodinger (NLS) Equation
Kaynak
Hacettepe Journal of Mathematics and Statistics
WoS Q Değeri
Scopus Q Değeri
Q3
Cilt
52
Sayı
1
Künye
Li, Y., Erdoğdu, M., Yavuz, A. (2023). Differential geometric approach of Betchov-Da Rios soliton equation. Hacettepe Journal of Mathematics and Statistics, 52, 1, 114-125.