Identification of full-night sleep parameters using morphological features of ECG signals: A practical alternative to EEG and EOG signals

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Electroencephalogram (EEG) signals, which are among the most important recordings used in Polysomnography for sleep staging, are more challenging and demanding than electrocardiography (ECG) signals, both in terms of acquisition and interpretation. When examining the studies of other researchers on sleep parameters in the literature, it is evident that EEG signals are predominantly used for determining arousal (AR), K-complex (Kc), and sleep spindle (Ss) parameters. Furthermore, it is understood that electrooculography (EOG) signals are employed for detecting slow eye movements (SEM) and rapid eye movements (REM) parameters.This study is a continuation of our previous research, where we used only EEG signals for Kc and Ss detection. In this study, an approach that includes ECG signals in the determination of sleep parameters to bring practicality to sleep staging studies was adopted. For this purpose, firstly, 16 morphological features were extracted from ECG recordings taken from a total of 24 subjects after various preprocessing steps. Subsequently, these data were used to work on the detection of five different sleep parameters: AR, Kc, Ss, SEM, and REM, using the Random Subspace (RaSE) ensemble learning algorithm. The results were calculated according to various statistical criteria and a classification accuracy of over 78 % was obtained in all parameters. As a result, the sleep parameters that could be determined most successfully using the ECG signal were SEM and arousal, respectively. In addition, feature elimination was performed for these datasets using Symmetric Uncertainty (SU) ranking. As a result of the reclassification process using 9 and 12 features, the effectiveness of which was determined for both datasets, respectively, significant increases were observed in the performance outputs. Experimental results have shown that ECG signals can be used as an alternative to EEG and EOG signals in the determination of full-night sleep parameters.

Açıklama

Anahtar Kelimeler

Random Subspace Algorithm, Sleep Parameters, Ecg, Morphological Features

Kaynak

Biomedical Signal Processing And Control

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

88

Sayı

Künye