Microstructural Characterization and Hardness Study of Nanostructured CoCrFeNi High Entropy Alloys with Dual Effect of Y and Nano-Sized Y2O3 Additions
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer India
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The motivation of this work is to increase the grain size stability of nanocrystalline CoCrFeNi high entropy alloys (HEA) with Y and Y2O3 additions to strike a balance between thermodynamic and kinetic stabilizations. The nanocrystalline HEAs prepared by mechanical alloying were annealed at different temperatures and characterized by X-ray diffraction, focused ion beam microscopy and micro-hardness test. The results revealed that as-milled nanostructured grain size yielded grain growth upon annealing reaching to 350 nm and 1.3 mu m after annealing at 900 degrees C and 1100 degrees C, respectively, while the addition of Y and Y2O3 appeared to stabilize the grain size in the nano-range after annealing at the same temperatures. Consequently, while the as-milled hardness of CoCrFeNi HEA dropped from 475 HV to around 200 HV after annealing at 1100 degrees C, the elevated hardness of 430 HV was retained with Y and Y2O3 additions after annealing at the same temperature.
Açıklama
Anahtar Kelimeler
Mechanical Alloying, High Entropy Alloys, Grain Growth, Dual Effect, Hardness
Kaynak
Transactions Of The Indian Institute Of Metals
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
75
Sayı
9