DIFFERENTIAL GEOMETRIC ASPECTS OF NONLINEAR SCHRODINGER EQUATION

dc.contributor.authorErdogdu, Melek
dc.contributor.authorYavuz, Ayse
dc.date.accessioned2024-02-23T14:34:42Z
dc.date.available2024-02-23T14:34:42Z
dc.date.issued2021
dc.departmentNEÜen_US
dc.description.abstractThe main scope of this paper is to examine the smoke ring (or vortex flament) equation which can be viewed as a dynamical system on the space curve in E-3: The differential geometric properties the soliton surface associated with Nonlinear Schrodinger (NLS) equation, which is called NLS surface or Hasimoto surface, are investigated by using Darboux frame. Moreover, Gaussian and mean curvature of Hasimoto surface are found in terms of Darboux curvatures k(n), k(g) and tau(g). Then, we give a different proof of that the s-parameter curves of NLS surface are the geodesics of the soliton surface. As applications we examine two NLS surfaces with Darboux Frame.en_US
dc.identifier.doi10.31801/cfsuasmas.724634
dc.identifier.endpage521en_US
dc.identifier.issn1303-5991
dc.identifier.issue1en_US
dc.identifier.startpage510en_US
dc.identifier.urihttps://doi.org/10.31801/cfsuasmas.724634
dc.identifier.urihttps://hdl.handle.net/20.500.12452/15717
dc.identifier.volume70en_US
dc.identifier.wosWOS:000663383900031en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherAnkara Univ, Fac Scien_US
dc.relation.ispartofCommunications Faculty Of Sciences University Of Ankara-Series A1 Mathematics And Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSmoke Ring Equationen_US
dc.subjectVortex Flament Equationen_US
dc.subjectNls Surfaceen_US
dc.subjectDarboux Frameen_US
dc.titleDIFFERENTIAL GEOMETRIC ASPECTS OF NONLINEAR SCHRODINGER EQUATIONen_US
dc.typeArticleen_US

Dosyalar