Hybrid Leonardo numbers

dc.contributor.authorAlp, Yasemin
dc.contributor.authorKocer, E. Gokcen
dc.date.accessioned2024-02-23T14:02:24Z
dc.date.available2024-02-23T14:02:24Z
dc.date.issued2021
dc.departmentNEÜen_US
dc.description.abstractUntil today, many researchers have studied related to hybrid numbers which are a generalization of complex, hyperbolic and dual numbers. In this paper, using the Leonardo numbers, we introduce the hybrid Leonardo numbers. Also, we give some algebraic properties of the hybrid Leonardo numbers such as recurrence relation, generating function, Binet's formula, sum formulas, Catalan's identity and Cassini's identity. (c) 2021 Elsevier Ltd. All rights reserved.en_US
dc.identifier.doi10.1016/j.chaos.2021.111128
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85108786763en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2021.111128
dc.identifier.urihttps://hdl.handle.net/20.500.12452/11699
dc.identifier.volume150en_US
dc.identifier.wosWOS:000680249600006en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofChaos Solitons & Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFibonacci Numbersen_US
dc.subjectHybrid Numbersen_US
dc.subjectLeonardo Numbersen_US
dc.titleHybrid Leonardo numbersen_US
dc.typeArticleen_US

Dosyalar