On Complex Split Quaternion Matrices
dc.contributor.author | Erdogdu, Melek | |
dc.contributor.author | Ozdemir, Mustafa | |
dc.date.accessioned | 2024-02-23T13:43:27Z | |
dc.date.available | 2024-02-23T13:43:27Z | |
dc.date.issued | 2013 | |
dc.department | NEÜ | en_US |
dc.description.abstract | In this paper, we present some important properties of complex split quaternions and their matrices. We also prove that any complex split quaternion has a 4 x 4 complex matrix representation. On the other hand, we give answers to the following two basic questions If AB = I, is it true that BA = I for complex split quaternion matrices? and How can the inverse of a complex split quaternion matrix be found?. Finally, we give an explicit formula for the inverse of a complex split quaternion matrix by using complex matrices. | en_US |
dc.identifier.doi | 10.1007/s00006-013-0399-z | |
dc.identifier.endpage | 638 | en_US |
dc.identifier.issn | 0188-7009 | |
dc.identifier.issn | 1661-4909 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopus | 2-s2.0-84881373506 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 625 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s00006-013-0399-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.12452/10815 | |
dc.identifier.volume | 23 | en_US |
dc.identifier.wos | WOS:000323070100008 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Basel Ag | en_US |
dc.relation.ispartof | Advances In Applied Clifford Algebras | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | [Keyword Not Available] | en_US |
dc.title | On Complex Split Quaternion Matrices | en_US |
dc.type | Article | en_US |