Construction of High-Performance Amperometric Acetaminophen Sensors Using Zn/ZnO-Decorated Reduced Graphene Oxide Surfaces
dc.contributor.author | Ozcan, Merve | |
dc.contributor.author | Basak, Adem | |
dc.contributor.author | Uzunoglu, Aytekin | |
dc.date.accessioned | 2024-02-23T14:26:27Z | |
dc.date.available | 2024-02-23T14:26:27Z | |
dc.date.issued | 2020 | |
dc.department | NEÜ | en_US |
dc.description.abstract | Sensitive and selective monitoring of acetaminophen (APAP), which is small but an important molecule used to relieve pain and inflammation, is of great importance in pharmacy. This study reports the development of zinc (Zn)/zinc oxide (ZnO)/reduced graphene oxide (rGO)-based electrochemical APAP sensors with a high sensitivity in a wide linear range. The Zn/ZnO/rGO nanohybrids were synthesized using a facile chemical precipitation method. The Zn and ZnO nanoparticles were anchored on the surface of rGO simultaneously. The XRD and TEM results indicated the presence of Zn and ZnO nanoparticles on the rGO surface, which was also confirmed by XPS and TGA analyses. The electrochemical performance of the sensors was investigated using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The electrochemical performance results showed that the sensors had a high sensitivity of 166.5 6 mu A.mM(-1).cm(-2) in the linear range between 0.05 to 2 mM, which is considerably wide compared to the literature. Overall, the Zn/ZnO/rGO nanohybrids displayed a great promise to be employed in the development of electrochemical APAP sensors due to their a high sensitivity, wide working window, excellent fabrication reproducibility, good storage stability, selectivity, and real sample analysis results. (C) 2020 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. | en_US |
dc.description.sponsorship | Necmettin Erbakan University [181719002, 192819006] | en_US |
dc.description.sponsorship | The authors acknowledge the financial supports provided by Research Fund of the Necmettin Erbakan University under the project numbers of 181719002 and 192819006. | en_US |
dc.identifier.doi | 10.1149/2162-8777/ab951b | |
dc.identifier.issn | 2162-8769 | |
dc.identifier.issn | 2162-8777 | |
dc.identifier.issue | 9 | en_US |
dc.identifier.scopus | 2-s2.0-85087105235 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.uri | https://doi.org/10.1149/2162-8777/ab951b | |
dc.identifier.uri | https://hdl.handle.net/20.500.12452/14201 | |
dc.identifier.volume | 9 | en_US |
dc.identifier.wos | WOS:000538745400001 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Electrochemical Soc Inc | en_US |
dc.relation.ispartof | Ecs Journal Of Solid State Science And Technology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Graphene | en_US |
dc.subject | Sensors | en_US |
dc.subject | Nanoclusters | en_US |
dc.title | Construction of High-Performance Amperometric Acetaminophen Sensors Using Zn/ZnO-Decorated Reduced Graphene Oxide Surfaces | en_US |
dc.type | Article | en_US |