Analytic simulation of MHD boundary layer flow of a chemically reacting upper-convected Maxwell fluid past a vertical surface subjected to double stratifications with variable properties

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The study of thermal stratification has a broad scope of applications in solar engineering owing to its ability to predict the cases of achieving superior energy efficiency. This present communication focuses on the flow of a free convective MHD upper-convected Maxwell fluid in concert temperature-dependent viscosity, thermal conductivity across a stratified surface with nth order of chemical reaction. The governing partial differential equations are transformed into nonlinear ordinary differential equations by introducing relevant similarity variables and approximate analytical solution is determined operating the homotopy analysis method. Influence of different relevant parameters such as Deborah number, stratification, chemical reaction and variable thermophysical parameters on temperature, velocity and concentration distributions is shown to highlight the specifics of heat and mass transfer flow characteristics. It is followed that for the cases of n=1 and n=2, the concentration of species reduces for increasing chemical reaction parameter. It is also noticed that, the values of -f ''(0) decrease while -theta'(0) and -phi(0) increase with increasing Deborah number beta.

Açıklama

Anahtar Kelimeler

[Keyword Not Available]

Kaynak

European Physical Journal Plus

WoS Q Değeri

Q2

Scopus Q Değeri

Q2

Cilt

137

Sayı

7

Künye