Eco-Friendly Boost for Perovskite Photovoltaics: Harnessing Cellulose-Modified SnO2 as a High-Performance Electron Transporting Material

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Chemical Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, a passivated tin oxide (SnO2) film is successfully obtained through the implementation of sodium carboxymethyl cellulose (Na-CMC) modifier agent and used as the electron transporting layer (ETL) within the assembly of perovskite solar cells (PSCs). The strategic incorporation of the Na-CMC modifier agent yields discernible enhancements in the optoelectronic properties of the ETL. Among the fabricated cells, the champion cell based on Na-CMC-complexed SnO2 ETL achieves a conversion efficiency of 22.2% with an open-circuit voltage (V-OC) of 1.12 V, short-circuit current density (J(SC)) of 24.57 mA/cm(2), and fill factor (FF) of 80.6%. On the other hand, these values are measured for the pristine SnO2 ETL-based control cell as V-OC = 1.11 V, J(SC) = 23.59 mA/cm(2), and FF = 76.7% with an efficiency of 20.1%. This improvement can be ascribed to the high charge extraction ability, higher optical transmittance, better conductivity, and decrease in the trap state density associated with the passivated ETL structure. In addition, the cells employing Na-CMC-complexed SnO2 ETL exhibit prolonged stability under ambient conditions during 2000 h. Based on the preliminary results, this study also presents a set of findings that could have substantial implications for the potential use of the Na-CMC molecule in both large-scale perovskite cells and perovskite/Si tandem configuration.

Açıklama

Anahtar Kelimeler

Perovskite Solar Cell, Electron Transporting Layer, Passivation Agent, Sno2, Na-Cmc

Kaynak

Acs Applied Materials & Interfaces

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

15

Sayı

49

Künye