Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots
Küçük Resim Yok
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Sa
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The production and application of chiral nanomaterials are expanding to understand the nature of chiral interactions and to detect chiral molecules due to the chirality is a fundamental characteristics of life processes. With the new advances in optical sensors by combining the advantages of optical signaling unit and sensing platform, new avenues can be opened to produce simple and useful devices for chiral sensor applications. Here, we report construction of nanoscale chirality of carbon quantum dots (CQDs) by functionalization with L-cysteine and application for paper-based sensors. Within this respect, nanopaper made of cellulose nanofibers was prepared and the produced chiral carbon quantum dots (cCQDs) were embedded into nanopaper to gain photoluminescence properties. The chiral sensing behavior of cCQDs was investigated in solution phase and nanopaper. cCQDs exhibited an enantioselective response towards L-lysine among the tested enantiomers of amino acids with a LOD value of 0.30 mM and 0.97 mM for solution phase and nanopaper, respectively.
Açıklama
Anahtar Kelimeler
Chiral Recognition, Chiral Carbon Quantum Dots, Nanopaper, Paper-Based Sensor, L-Lysine
Kaynak
Sensors And Actuators B-Chemical
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
279