Iridium/Silicon Ultrathin Film for Ultraviolet Photodetection: Harnessing Hot Plasmonic Effects

dc.contributor.authorBasyooni, Mohamed A.
dc.contributor.authorTihtih, Mohammed
dc.contributor.authorBoukhoubza, Issam
dc.contributor.authorIbrahim, Jamal Eldin F. M.
dc.contributor.authorEn-nadir, Redouane
dc.contributor.authorAbdelbar, Ahmed M.
dc.contributor.authorRahmani, Khalid
dc.date.accessioned2024-02-23T13:03:32Z
dc.date.available2024-02-23T13:03:32Z
dc.date.issued2024
dc.departmentNEÜen_US
dc.description.abstractThe phenomenon of hot carriers, which are generated through the nonradiative decay of surface plasmons in ultrathin metallic films, offers an intriguing opportunity for subbandgap photodetection even at room temperature. These hot carriers possess sufficient energy to inject into the conduction band of a semiconductor material. The groundbreaking use of iridium (Ir) ultrathin film as an ultraviolet (UV) plasmonic material on silicon (Si) for high-performance photodetectors (PHDs) has been successfully demonstrated. Elevating the thickness of the sputtered Ir film to 4 nm yields a notable surge in photocurrent, registering an impressive 600 & mu;A under 365 nm UV illumination with electron mobility of 1.37E3 cm2 V-1 s. This PHD exhibits excellent OFF-ON photoresponses at various applied voltages ranging from 0 to 5 V, maintaining a stable photocurrent. Under UV illumination, it displays exceptional performance, achieving a high detectivity of 1.25E14 Jones and a responsivity of 1.28 A W-1. These outstanding results underscore the significant advantages of increasing the thickness of the Ir film in PHDs, leading to improvements in conductivity, detectivity, external quantum efficiency, responsivity, as well as superior sensitivity for light detection. Exploring hot plasmon effects in iridium/silicon ultrathin films: This study delves into a remarkable ultrasmooth iridium thin film's application in hot electron plasmonic photodetectors. Exciting strides in optoelectronic devices are anticipated, owing to their capability for efficient light modulation, absorption, and conversion, with implications for photodetection and solar energy transformation.image & COPY; 2023 WILEY-VCH GmbHen_US
dc.description.sponsorshipSelcuk University-Scientific Research Projects Coordination (BAP) Unit [22211012]en_US
dc.description.sponsorshipThis project was supported by the Selcuk University-Scientific Research Projects Coordination (BAP) Unit, grant number 22211012.en_US
dc.identifier.doi10.1002/pssr.202300257
dc.identifier.issn1862-6254
dc.identifier.issn1862-6270
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85169838357en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1002/pssr.202300257
dc.identifier.urihttps://hdl.handle.net/20.500.12452/10662
dc.identifier.volume18en_US
dc.identifier.wosWOS:001058481600001en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherWiley-V C H Verlag Gmbhen_US
dc.relation.ispartofPhysica Status Solidi-Rapid Research Lettersen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigh Electron Mobility Devicesen_US
dc.subjectPhotodetectorsen_US
dc.subjectPlasmonicen_US
dc.subjectThin Filmsen_US
dc.subjectSputteringen_US
dc.titleIridium/Silicon Ultrathin Film for Ultraviolet Photodetection: Harnessing Hot Plasmonic Effectsen_US
dc.typeArticleen_US

Dosyalar