Involutions in Dual Split-Quaternions

dc.contributor.authorBekar, Murat
dc.contributor.authorYayli, Yusuf
dc.date.accessioned2024-02-23T13:43:28Z
dc.date.available2024-02-23T13:43:28Z
dc.date.issued2016
dc.departmentNEÜen_US
dc.description.abstractInvolutions and anti-involutions are self-inverse linear mappings. In three-dimensional Euclidean space , a reflection of a vector in a plane can be represented by an involution or anti-involution mapping obtained by real-quaternions. A reflection of a line about a line in can also be represented by an involution or anti-involution mapping obtained by dual real-quaternions. In this paper, we will represent involution and anti-involution mappings obtaind by dual split-quaternions and a geometric interpretation of each as rigid-body (screw) motion in three-dimensional Lorentzian space .en_US
dc.identifier.doi10.1007/s00006-015-0624-z
dc.identifier.endpage571en_US
dc.identifier.issn0188-7009
dc.identifier.issn1661-4909
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84949671476en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage553en_US
dc.identifier.urihttps://doi.org/10.1007/s00006-015-0624-z
dc.identifier.urihttps://hdl.handle.net/20.500.12452/10818
dc.identifier.volume26en_US
dc.identifier.wosWOS:000376414600003en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofAdvances In Applied Clifford Algebrasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReal-Quaternionsen_US
dc.subjectDual Split-Quaternionsen_US
dc.subjectInvolutionsen_US
dc.subjectAnti-Involutionsen_US
dc.subjectRigid-Body (Screw) Motionsen_US
dc.titleInvolutions in Dual Split-Quaternionsen_US
dc.typeArticleen_US

Dosyalar