Lie Algebra of Unit Tangent Bundle

dc.contributor.authorBekar, Murat
dc.contributor.authorYayli, Yusuf
dc.date.accessioned2024-02-23T13:43:28Z
dc.date.available2024-02-23T13:43:28Z
dc.date.issued2017
dc.departmentNEÜen_US
dc.description.abstractIn this paper, semi-quaternions are studied with their basic properties. Unit tangent bundle of is also obtained by using unit semi-quaternions and it is shown that the set of all unit semi-quaternions based on the group operation of semi-quaternion multiplication is a Lie group. Furthermore, the vector space matrix of angular velocity vectors forming the Lie algebra of the group is obtained. Finally, it is shown that the rigid body displacements obtained by using semi-quaternions correspond to planar displacements in .en_US
dc.identifier.doi10.1007/s00006-016-0670-1
dc.identifier.endpage975en_US
dc.identifier.issn0188-7009
dc.identifier.issn1661-4909
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-84964329779en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage965en_US
dc.identifier.urihttps://doi.org/10.1007/s00006-016-0670-1
dc.identifier.urihttps://hdl.handle.net/20.500.12452/10820
dc.identifier.volume27en_US
dc.identifier.wosWOS:000401669000006en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofAdvances In Applied Clifford Algebrasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLie Algebraen_US
dc.subjectPlanar Displacementen_US
dc.subjectReal-Quaternionen_US
dc.subjectSemi-Quaternionen_US
dc.subjectUnit Tangent Bundleen_US
dc.titleLie Algebra of Unit Tangent Bundleen_US
dc.typeArticleen_US

Dosyalar