Improving the performance of the organic solar cell and the inorganic heterojunction devices using monodisperse Fe3O4 nanoparticles

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Gmbh, Urban & Fischer Verlag

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

8 nm Fe3O4 nanoparticles (NPs) were successfully doped into poly(3hexylthiophene):phenyl-C-61-butyric acid methyl ester (P3HT:PCBM) to fabricate ITO/PEDOT:PSS/P3HT:PCBM:Fe3O4/AI solar cell along with a heterojunction device of Fe3O4/p-GaAs by depositing them on p-GaAs substrates. The experimental results revealed that the presence of Fe3O4 nanoparticles (NPs) in the ITO/PEDOT:PSS/P3HT:PCBM/A1 solar cell improved its performance with respect to the one without Fe3O4. For example, power conversion efficiency was increased from 1.09% to 2.22% when doping 5 wt% of Fe3O4 NPs to P3HT:PCBM. This was attributed to increase of the light absorption in the presence of Fe3O4 NPs doping. Furthermore, the analysis of the current-voltage (I-V), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristics of the Fe3O4/p-GaAs heterojunction have been studied successfully. The experimental barrier height Ob and ideality factor n were determined as 0.80 eV and 1.53, respectively, from the experimental I-V plots. In addition, the value of the Phi(b) obtained from the C-V characteristics was 0.95 eV (f= 500 kHz). The mismatch between barrier heights obtained from both measurements was explained by the two techniques are based on different nature. The interface state density of the Fe3O4/p-GaAs heterojunction was determined from 5.16 x 10(14) cm(-2)eV(-1) to 1.34 x 10(15) cm(-2)eV(-1). (C) 2017 Elsevier GmbH. All rights reserved.

Açıklama

Anahtar Kelimeler

Ito/Pedot:Pss/P3ht:Pcbm:Fe3o4 Solar Cell, Fe3o4 Nanoparticles, Fe3o4/P-Gaas Heterostructure, Inhomogeneity Barrier, Ideality Factor

Kaynak

Optik

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

142

Sayı

Künye