The identities for generalized Fibonacci numbers via orthogonal projection

dc.contributor.authorAlp, Yasemin
dc.contributor.authorKocer, E. Gokcen
dc.date.accessioned2024-02-23T14:44:51Z
dc.date.available2024-02-23T14:44:51Z
dc.date.issued2019
dc.departmentNEÜen_US
dc.description.abstractIn this paper, we consider the space R(p, 1) of generalized Fibonacci sequences and orthogonal bases of this space. Using these orthogonal bases, we obtain the orthogonal projection onto a subspace R(p, 1) of R-n. By using the orthogonal projection, we obtain the identities for the generalized Fibonacci numbers.en_US
dc.identifier.doi10.7546/nntdm.2019.25.1.167-177
dc.identifier.endpage177en_US
dc.identifier.issn1310-5132
dc.identifier.issn2367-8275
dc.identifier.issue1en_US
dc.identifier.startpage167en_US
dc.identifier.urihttps://doi.org/10.7546/nntdm.2019.25.1.167-177
dc.identifier.urihttps://hdl.handle.net/20.500.12452/17143
dc.identifier.volume25en_US
dc.identifier.wosWOS:000462096500017en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherBulgarian Acad Scienceen_US
dc.relation.ispartofNotes On Number Theory And Discrete Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFibonacci Numbersen_US
dc.subjectOrthogonal Basisen_US
dc.titleThe identities for generalized Fibonacci numbers via orthogonal projectionen_US
dc.typeArticleen_US

Dosyalar