Liu-Type Logistic Estimators with Optimal Shrinkage Parameter
dc.contributor.author | Asar, Yasin | |
dc.date.accessioned | 2024-02-23T14:48:46Z | |
dc.date.available | 2024-02-23T14:48:46Z | |
dc.date.issued | 2016 | |
dc.department | NEÜ | en_US |
dc.description.abstract | Multicollinearity in logistic regression affects the variance of the maximum likelihood estimator negatively. In this study, Liu-type estimators are used to reduce the variance and overcome the multicollinearity by applying some existing ridge regression estimators to the case of logistic regression model. A Monte Carlo simulation is given to evaluate the performances of these estimators when the optimal shrinkage parameter is used in the Liutype estimators, along with an application of real case data. | en_US |
dc.identifier.endpage | 751 | en_US |
dc.identifier.issn | 1538-9472 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-84975263295 | en_US |
dc.identifier.scopusquality | Q4 | en_US |
dc.identifier.startpage | 738 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12452/17826 | |
dc.identifier.volume | 15 | en_US |
dc.identifier.wos | WOS:000411568100035 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wayne State Univ Press | en_US |
dc.relation.ispartof | Journal Of Modern Applied Statistical Methods | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Logistic Regression | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Maximum Likelihood | en_US |
dc.subject | Mse | en_US |
dc.subject | Liu-Type Estimator | en_US |
dc.title | Liu-Type Logistic Estimators with Optimal Shrinkage Parameter | en_US |
dc.type | Article | en_US |