Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Tanis, Caner" seçeneğine göre listele

Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Liu-type estimator in Conway-Maxwell-Poisson regression model: theory, simulation and application
    (Taylor & Francis Ltd, 2024) Tanis, Caner; Asar, Yasin
    Recently, many authors have been motivated to propose a new regression estimator in the case of multicollinearity. The most well-known of these estimators are ridge, Liu and Liu-type estimators. Many studies on regression models have shown that the Liu-type estimator is a good alternative to the ridge and Liu estimators in the literature. We consider a new Liu-type estimator, an alternative to ridge and Liu estimators in Conway-Maxwell-Poisson regression model. Moreover, we study the theoretical properties of the Liu-type estimator, and we provide some theorems showing under which conditions that the Liu-type estimator is superior to the others. Since there are two parameters of the Liu-type estimator, we also propose a method to select the parameters. We designed a simulation study to demonstrate the superiority of the Liu-type estimator compared to the ridge and Liu estimators. We also evaluated the usefulness and superiority of the proposed regression estimator with a practical data example. As a result of the simulation and real-world data example, we conclude that the proposed regression estimator is superior to its competitors according to the mean square error criterion.
  • Küçük Resim Yok
    Öğe
    A new zero-inflated discrete Lindley regression model
    (Taylor & Francis Inc, 2023) Tanis, Caner; Koc, Haydar; Pekgor, Ahmet
    Recently, providing a new count regression model is very popular for many researchers. These count regression models are constructed by using a new discrete distribution or one of the existing distributions in the literature. In this paper, we consider a new zero-inflated regression model as an alternative to the zero-inflated regression models. We present two real data applications to illustrate the usefulness of the suggested regression model in modeling data, and compare the competitor models such as Poisson, discrete Lindley, and zero-inflated regression models. We provide a new count regression model which is useful in modeling overdispersed data.
  • Küçük Resim Yok
    Öğe
    Transmuted Lower Record Type Frechet Distribution with Lifetime Regression Analysis Based on Type I-Censored Data
    (Atlantis Press, 2021) Tanis, Caner; Saracoglu, Bugra; Kus, Coskun; Pekgor, Ahmet; Karakaya, Kadir
    This paper introduces a new lifetime distribution by mixing the first two lower record values and various distributional properties are examined. Statistical inference on distribution parameters are discussed with five estimators. A Monte Carlo simulation study is carried out to evaluate the risk behavior of these estimators for different sample of sizes. The distribution modeling analysis is provided based on real data to demonstrate the fitting ability of the proposed model. In addition, a lifetime regression model is described by re-parameterization on the log lifetimes. The superiority of proposed regression model is revealed in well-known models. (C) 2021 The Authors. Published by Atlantis Press B.V.

| Necmettin Erbakan Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Yaka Mahallesi, Yeni Meram Caddesi, Kasım Halife Sokak, No: 11/1 42090 - Meram, Konya, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder