Dual Quaternion Involutions and Anti-Involutions

dc.contributor.authorBekar, Murat
dc.contributor.authorYayi, Yusuf
dc.date.accessioned2024-02-23T13:43:27Z
dc.date.available2024-02-23T13:43:27Z
dc.date.issued2013
dc.departmentNEÜen_US
dc.description.abstractAn involution or anti-involution is a self-inverse linear mapping. In this paper, we present involutions and anti-involutions of dual quaternions. In order to do this, quaternion conjugate, dual conjugate and total conjugate are defined for a dual quaternion and these conjugates are used in some transformations in order to check whether involution or anti-involution axioms are being satisfied or not by these transformations. Finally, geometric interpretations of real quaternion and dual quaternion involutions and anti-involutions are given.en_US
dc.identifier.doi10.1007/s00006-013-0398-0
dc.identifier.endpage592en_US
dc.identifier.issn0188-7009
dc.identifier.issn1661-4909
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84881376575en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage577en_US
dc.identifier.urihttps://doi.org/10.1007/s00006-013-0398-0
dc.identifier.urihttps://hdl.handle.net/20.500.12452/10814
dc.identifier.volume23en_US
dc.identifier.wosWOS:000323070100004en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Basel Agen_US
dc.relation.ispartofAdvances In Applied Clifford Algebrasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectReal Quaternionsen_US
dc.subjectDual Numbersen_US
dc.subjectDual Quaternionsen_US
dc.subjectInvolutionsen_US
dc.subjectAnti-Involutionsen_US
dc.titleDual Quaternion Involutions and Anti-Involutionsen_US
dc.typeArticleen_US

Dosyalar