Neuroprotective Effects of Milrinone on Experimental Acute Spinal Cord Injury: Rat Model
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
OBJECTIVE: Spinal cord injury (SCI) disrupts nerve axons with devastating neurological consequences, but there is no effective clinical treatment. The secondary damage mechanism is a mainstay process, and it starts within a few minutes after trauma. We aim to investigate the neuroprotective effects of milrinone on the SCI model. MATERIALS AND METHODS: A total of 36 Wistar albino rats, each weighing 300-400 g, were randomly split into 4 groups that received different treatments: in group 1 (sham) (n = 9) control, only a laminectomy was performed; in group 2 (SCI) (n = 9), SCI was imitated after laminectomy; in group 3 (SCI + saline) (n = 9), physiological saline solution was injected intraperitoneally immediately after the SCI; and in group 4 (SCI + milrinone), milrinone was administered intraperitoneally on lateral decubitus position immediately after the SCI. Spinal cord contusion was established by the weight-drop technique after laminectomy. Neurological examination scores were recorded, and rats were killed 72 hours later. Serum and spinal cord tissue glutathione peroxidase, total antioxidant status, total oxidant status, 8-hydroxiguanosine, interleukin-6 and interleukin-10 levels, histopathological spinal cord damage score, and apoptotic index were examined and compared between groups. RESULTS: Neurological examination scores were significantly better in the milrinone-treated group compared with groups 2 and 3. SCI significantly increased serum and spinal cord tissue glutathione peroxidase, total oxidant status, 8- hydroxiguanosine, and interleukin-6 levels that were successfully reduced with milrinone treatment. Interleukin-10 and total antioxidant status levels decreased as a result of SCI increased with milrinone treatment. Increased histopathological spinal cord damage score and apoptotic index in groups 2 and 3 significantly decreased in group 4. CONCLUSIONS: Milrinone could reduce apoptosis and increase anti-inflammatory and antioxidative mediators, thus playing a protective role in secondary nerve injury after SCI in rats.
Açıklama
Anahtar Kelimeler
Experimental, Milrinone, Rat, Spinal Cord Injury
Kaynak
World Neurosurgery
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
147